

test & MEASUREMENT WORLD

THE MAGAZINE FOR QUALITY IN ELECTRONICS

PROJECT PROFILE

Flying tests

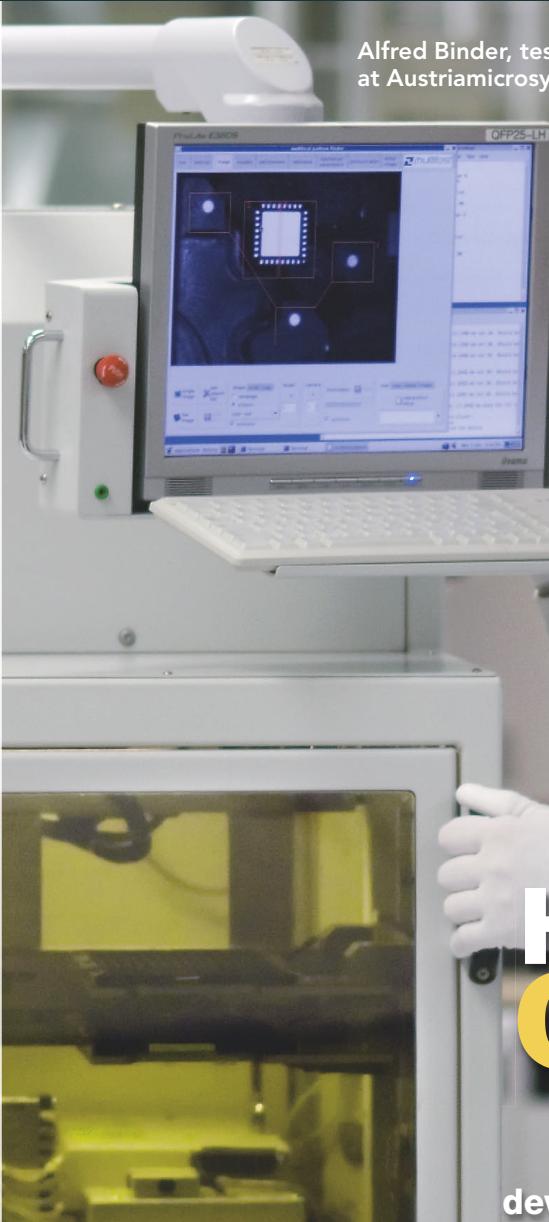
29

COMMUNICATIONS TEST

Accelerate and simplify serial data testing

39

DESIGN FOR TEST


DFT, ATE drive yield improvement

45

TECH TRENDS

PCs change quickly; test setups don't

23

Alfred Binder, test-handling manager at Austriamicrosystems.

HANDLING QUALITY

A vision-alignment technique positions Austriamicrosystems' devices for test while the company positions itself as a key supplier in communications, industrial, medical, and automotive markets.

CLICK HERE TO
RENEW

your FREE **magazine**
subscription

CLICK HERE TO
START

a FREE **e-newsletter**
subscription

Page 30

The Bigger Picture!

Meet the power houses of the family.

Starprobe 1, 2 and the newest member, the world's first 18 GHz laser probe Starprobe 3

We also would like you to meet our battery operated probes

And, the anchor of the family - our exceptionally precise field monitor

World's Largest Selection Of Field Probes – 5 kHz to 60 GHz

AR's line of field monitoring equipment is not only the largest, most comprehensive in the EMC field, it's also the most technologically advanced. No other company even comes close to the performance, the reliability or the options available from AR.

The family of Starprobe® laser powered probes covers the broadest frequency range – 5 kHz to 18 GHz!

These E-field laser probes contain an internal microprocessor that enables them to "think" for themselves and adapt to their environment. This provides optimal linearization, temperature compensation, control, and communication functions.

They also have three levels of safety for ultimate protection.

Starprobe® 1 Laser Powered Probe (Model FL7030) 5 kHz - 30 MHz / 1.5 - 300 V/m

Starprobe® 2 Laser Powered Probe (Model FL7006) 100 kHz - 6 GHz / 0.5 - 800 V/m redesigned to meet the IEC 6 GHz requirement!

Starprobe® 3 Laser Powered Probe (Model FL7018) 3 MHz - 18 GHz / 1 - 1000 V/m the world's first 18 GHz laser probe! Six battery-operated E&H Field Probes, 100 kHz - 60 GHz with quicker calibration turnaround, more complete data and excellent isotropic response and linearity.

Starmonitor® Field Monitor, (FM7004) exceptionally precise with auto-recognition to adapt to laser or battery-powered probes. Like all AR products, our probes and monitor are backed by our limitless support network and by the most comprehensive warranty in the industry.

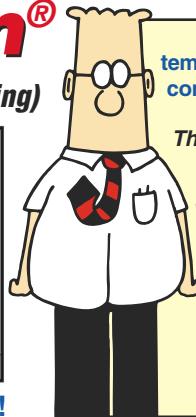
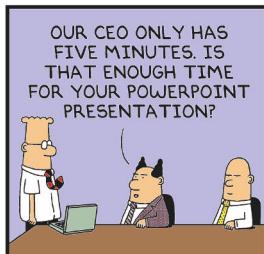
To learn more, visit www.ar-worldwide.com or call us at 215-723-8181.

ISO 9001:2000
Certified

rf/microwave instrumentation

Other **ar** divisions: modular rf • receiver systems • ar europe

USA 215-723-8181. For an applications engineer, call 800-933-8181.



In Europe, call ar emv United Kingdom 441-908-282766 • ar emv France 33 -1-47-91-75-30 • emv Germany 89-614-1710 • emv Netherlands 31-172-423-000

Copyright© 2008 AR. The orange stripe on AR products is Reg. U.S. Pat. & TM. Off.

Need More Temperature Options?

Shop online at **omega.com**®

100,000 process control and measurement products (and counting)

Find thousands of temperature measurement and control products in one place! Visit omega.com to order The Temperature Handbook™ and Encyclopedia

Go to: www.omega.com/dilbert for your daily dose of DILBERT!

Omega Proudly Sponsors—The Regional Rube Goldberg Machine Contest
at Purdue University, Saturday February 23

<p>*PATENTED HJM290 Starts at \$245</p> <p>*SUPERMETER® with Patented Laser Sighting Non-Contact Temperature Measurement</p>	<p>*PATENTED UWTC Series Starts at \$125</p> <p>*Thermocouple-to-Wireless Connector/Converter The Smart Connector™</p>	<p>CL1600 Starts at \$2995</p> <p>Surface Probe Calibrator</p>	<p>CTXL Series Starts at \$795</p> <p>*PATENTED *SUPERRECORDER™ Microprocessor-Based Temperature/Relative Humidity Chart Recorder with RS232 Interface</p>
<p>OMEGASCOPE® OS530E Starts at \$295</p> <p>*Handheld Infrared Thermometers</p>	<p>SA1-RTD Series Starts at \$50</p> <p>Self Adhesive Surface-Mount RTD</p>	<p>FOH201 Starts at \$2650</p> <p>Handheld Fiber Optic Meter</p>	<p>RD9900 Series Starts at \$2500</p> <p>Paperless Recorder with Standard Ethernet and USB Communications Interface</p>
<p>BOS Series Starts at \$499</p> <p>Benchtop Oscilloscope</p>	<p>*PATENTED OSXL450 Starts at \$59</p> <p>*Infrared Thermometer with Circle/Dot Laser Sighting</p>	<p>TXDIN101 Starts at \$220</p> <p>DIN Rail Universal Smart Transmitter</p>	<p>OS35RS Series Starts at \$249</p> <p>Smart-Micro IR T/C Adding Smart Linearization to the Smallest IR Temperature Sensors in the World!</p>

analab
analab, LLC
630 Heron Drive
Bridgeport, NJ 08014
Phone: 1-856-467-4200
Fax: 1-856-467-4406
Email: info@analab1.com

Analab provides superior engineering support and close consultation for prompt product evaluation and state-of-the-art testing.

Professional Solutions for ALL Your Compliance Requirements

analab1.com® 1-800-262522-9® 1-800-analab-x

With local accommodations, Analab is your one-stop source for CE and FCC product compliance needs.

Strategically Located in Bridgeport, NJ
Just 20 minutes from the Philadelphia Airport at the junction of Rt. 295, Exit 10 and the New Jersey Turnpike, Exit 2

For Sales and Service, Call TOLL FREE

**1-888-82-66342®
1-888-TC-OMEGA**

Based on an Original Norman Rockwell illustration © The Curtis Publishing Company
© United Feature Syndicate, Inc.

Shop Online:
testandmeasurement.com

***PATENTED**
Covered by U.S. and International patents and pending applications

Shop Online at

omega.com®
ΩOMEGA®

© COPYRIGHT 2008 OMEGA ENGINEERING, INC. ALL RIGHTS RESERVED

Create any kind of waveform

With the industry's best-selling function generators.

Sine
~

Ocean
~

Ramp
~

Pulse
⊛

Noise
~

Arb
~

Agilent 33220A Function Generator

	33220A	33250A
Basic Waveforms	20 MHz Sine & Square	80 MHz Sine & Square
Pulse	Variable Edge 5 MHz	Variable Edge 50 MHz
Arbitrary Waveforms	14-bits, 64K points	12-bits, 64K points
Modulation (Internal / External)	AM, FM, PM, FSK & PWM	AM, FM & FSK
Open Connectivity	USB, GPIB & LAN	GPIB & RS232
Price (USD, Subject to change)	\$1,853.00	\$4,553.00

For waveform generation, more people turn to Agilent than anyone else.

The Agilent 33220A and 33250A produce almost any kind of waveform you can imagine. You'll have built-in modulation, sweep, and burst capabilities. You'll be able to generate pulses and create arbitrary waveforms using up to 64K points of memory. With this much functionality, the possibilities are endless.

Agilent function generators come with free IntuiLink software and industry standard I/O connectivity for your PC. Built for both R&D and manufacturing use, the 33220A and 33250A add value to every stage of the design cycle.

To learn more, go to www.agilent.com/find/functiongens2

© Agilent Technologies, Inc. 2008

Agilent Authorized Distributor

CONTINENTAL RESOURCES, INC.

800-937-4688 Option 2 www.conres.com/test-equipment

Agilent Technologies

COVER BY: STEFAN KRISTOFERITSCH/
NPN WORLDWIDE

Test Voices / Page 11

DEPARTMENTS

- 7 Editor's note
- 11 Test voices
- 12 News briefs
- 51 Product update
- 66 Viewpoint
- 8 Editorial staff
- 65 Business staff

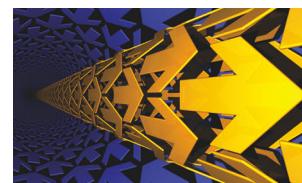
TEST DIGEST

- 26 Using enterprise software to maximize test impact
- 26 Oscilloscope probe hints
- 27 Achieving PCI Express physical-layer compliance

CONTENTS

FEATURES

29 PROJECT PROFILE
Flying tests


Engineers at Hawker Beechcraft have developed data-acquisition systems that flight-test engineers use to evaluate design changes.
Martin Rowe, Senior Technical Editor

30 SEMICONDUCTOR TEST COVER STORY
Handling quality

A vision-alignment technique positions Austriamicrosystems' devices for test while the company positions itself as a key supplier in communications, industrial, medical, and automotive markets.
By Rick Nelson, Chief Editor

39 COMMUNICATIONS TEST
Accelerate and simplify serial data testing

Engineers show how to improve jitter and BER testing for SerDes devices.
By Martin Rowe, Senior Technical Editor

45 DESIGN FOR TEST
DFT, ATE drive yield improvement

Automated test equipment is becoming a yield-metrology tool that works in conjunction with yield-analysis software.
By Ajay Khoche, Verigy, and Wu Yang, Mentor Graphics

TECH TRENDS

23 PCs change quickly; test setups don't

MARKET TRENDS

25 Luminous growth in MEMS test equipment market

TEST REPORT SUPPLEMENT

57 Machine-Vision & Inspection Test Report

- Smart cameras serve as LabView targets
- Machine-vision focus shifts with application
- Transmissive 2-D x-rays speed PCB inspection

RENEW YOUR T&MW SUBSCRIPTION ONLINE: WWW.GETFREEMAG.COM/TMW

Need a Quick Turnaround?

Timely testing can make a substantial difference to your business in terms of achieving product launch dates and shipping products to your customers on time. At ESSC we have unmatched Turnaround of your test results and we do it right the first time. So if other services are giving you the run around try ESSC and improve your Turnaround.

Our Fast, Accurate and Detailed Testing Services Include:

- Dynamic Vibration
- Shock
- Temperature
- Humidity
- Combined Temperature, Vibration and/or Humidity

Test Laboratories

Ohio Laboratory
11901 Mosteller Road
Cincinnati, OH 45241
ph: 513-793-7774
email: essccin@cszinc.com

Michigan Laboratory
44461 Phoenix Drive
Sterling Heights, MI 48314
ph: 586-997-3589
email: esscmi@cszinc.com

Cert. No. 503.01 & 503.02

Visit our website at
www.esscinc.com/drawing.aspx
and enter a drawing for BOSE
Noise Reduction Headphones.

ONLINE
www.tmworld.com

Check out these exclusive features on the *Test & Measurement World* Web site:

Asset InterTech gains CPU access with ITT acquisition

Glenn Woppman, president and CEO of Asset InterTech, and Billy Fenton, Asset's chief technologist for CPU emulation, discuss how Asset's acquisition of International Test Technologies helps break down the barriers between structural and functional test in an exclusive online interview.

www.tmworld.com/asset_itt

Blog commentaries and links

Taking the Measure

Rick Nelson, Chief Editor

- Are you electrosensitive?
A new study on cell phones' effect on sleep will give the tinfoil hat crowd something to worry about.

Rowe's and Columns

Martin Rowe, Senior Technical Editor

- Excel 2007 has 16 times more rows
The spreadsheet's improved capacity can aid data-acquisition applications.

www.tmworld.com/blogs

There's still time to vote!

Read about the 2008 Best in Test winners and then cast your ballot for the Test Product of the Year. Voting deadline: February 15.

www.tmworld.com/awards

Take a T&M Challenge

Check out our latest challenge questions, and you could win a valuable prize from the challenge sponsor. New challenge questions every month!

www.tmworld.com/challenge

From the archives

• Color enhances inspection results

For most machine-vision applications, gray-scale images provide sufficient information, but in some cases, color images add an extra "dimension" that improves inspection results, as contributing technical editor Jon Titus explains in an article from our November 2006 issue.

www.tmworld.com/2006_11

We make you part of the story! Let our T&M solutions show you how.

Thursday, June 3, 2010

B U S I N E S S

Demand for mobile high-speed connections exceeds all forecasts

4G technologies adding billions to the bottom line

Unique test and measurement products for the 3GPP LTE, HSPA+, and WiMAX standards, including MIMO functionality: That's what we offer to make your path to market as smooth as possible. Our solutions make the difference – from the initial idea to the finished product. See for yourself!

www.rohde-schwarz.com/ad/technologies

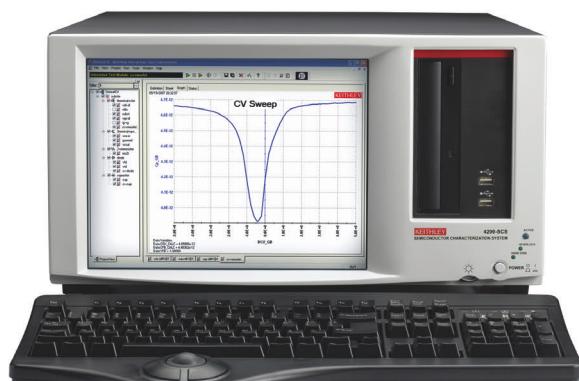
Please visit us at the
Mobile World Congress in Barcelona
Hall 1, booth 1D59 and 1C50

The success of 4G technologies is giving companies that supply equipment for radio infrastructure a real boost in sales because of the continually increasing demand for the new Internet services. And the market does not stand still: New service providers are carrying out innovative business models based on flat-rate tariffs. These providers are especially appealing to the needs of budgets of the young target groups for whom owning a smartphone is a must.

Mobile broadband services based on 3G and 4G technologies are currently offered by

 ROHDE & SCHWARZ

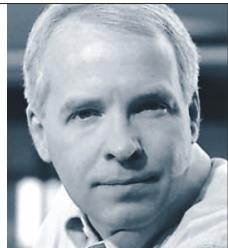
TOD


Finance Minister mincing his words "is doing," he said a general partner. In addition, the institution has roughly 20 branches in Frankfurt's hotel. The figures were met with this didn't stand. "We suffer from Social Democrats on buying profit."

That was only three weeks after the disaster at the had become chairman of the president's Financial (BaFin), longer is Düsseldorf, at the verge of executive decisions, principal government Kreditanstalt (KfW), making

Find out about pubannals, frantic meetings, board, Director KfW, of which Sanofi could since triggered bail-out what KfW

In your complex world...
...only Keithley delivers an intuitive, integrated, one-box solution
for DC I-V, pulse, and C-V characterization



**MODEL 4200-SCS SEMICONDUCTOR PARAMETER
ANALYZER WITH INTEGRATED C-V OPTION**

- **Integrate multiple test types easily** into a single automated test sequence.
- Save time with our **extensive C-V test library** and **built-in parameter extractions**.
- **Get your system up and running quickly and simply** with turnkey application packages.
- **Don't get stuck with obsolete hardware** — get a system engineered to grow with you cost-effectively as your test requirements evolve.

Go to www.keithley.com/one and try a demo.

RICK NELSON
CHIEF EDITOR

Standards beneficial, but no panacea

2007 would seem to have been a good year for standards, both formal and *de facto*. PXI turned 10 years old, and PXI-based instrument sales are growing at double-digit annual rates, according to Frost & Sullivan research.

LXI-equipped instruments achieved \$200 million in sales just two years after the standard's 2005 introduction. Although several industry observers have questioned the significance of that figure—wondering exactly how many of compliant instruments' LXI ports actually get used—it seems clear to me that LXI's cost and form-factor advantages and its ubiquity will accelerate its use. Even the venerable VXI is hanging on. Although Frost &

Sullivan expects VXI revenues to tail off gradually, new VXI instruments, such as ZTEC Instruments' ZT4610 VXI digital os-

cilloscopes, were introduced in 2007. In addition, a new VXI-LXI developer's kit from VXI Technology enables hybrid test systems that make the best of both standards.

On the semiconductor test front, the Semiconductor Test Consortium has not been successful in getting big-iron ATE makers other than Advantest to build OpenStar-compliant test systems, but it has been successful in broadening the consortium's appeal—attracting the attention of companies like LTX—with the STIX initiative, which addresses the mechanical interfaces that surround a tester in a test cell.

The machine-vision industry, too, is riding a wave of successful standards, including Camera Link, GigE Vision, and the DCAM FireWire spec. As for *de facto* standards, data from the VDMA (German Engineering Federation) presented at Vision 2007 shows that sales of standard user-

configurable systems, including smart cameras, are growing, while sales of custom single-application systems are falling (see p. 59).

But some events and comments in 2007 highlighted the limitations of standards. Consider smart cameras. Smart cameras from several vendors include standard processors and operating systems, but that doesn't make them standard enough for National Instruments. NI is not averse to supporting third-party cameras—it resells GigE Vision and FireWire cameras from Basler. But the company decided to create its own smart-camera line-up in order to ensure the cameras would represent a true LabView target that NI engineers would have complete control over, according to NI vision product manager Matt Slaughter (p. 57).

Consider, too, the semiconductor EDA-to-ATE interface. Ajay Khoche of Verigy and Wu Yang of Mentor Graphics comment on the benefits of such a standard on p. 45. But despite efforts such as the Semiconductor Test Consortium's STIL initiative, a commercially feasible standard EDA-to-ATE interface remains elusive. That, in part, motivated Verigy to acquire Inovys. Larry DiBattista, the senior manager at Verigy responsible for the Inovys initiative, said that Verigy and Inovys needed much tighter levels of integration with each other's respective tools to help isolate root causes of failures detected by a V93000 tester. "We really needed to establish a much tighter loop with the Inovys software," he said, adding, "The Verigy purchase of Inovys made sense as the optimum way to provide the much tighter level of integration we needed."

These counterexamples represent not a repudiation of standards efforts—they rather suggest a healthy tension that will drive standards' evolution as individual vendors strive for competitive advantages with proprietary approaches. **T&MW**

"A healthy tension drives standards evolution."

> > > POST YOUR COMMENTS AT WWW.TMWORLD.COM/BLOG.

Switching?

Controlled via
TCP/IP

Products span DC to 40GHz

Series G2

Rack Mountable Switching Systems

It's what we do!

- 1000's of standard plug-in modules available
- Built-in Ethernet, GPIB and Serial ports with LXI support
- Hot-swap redundant power supplies
- Field upgradable firmware
- Rugged aluminum construction
- Various sized units to meet most needs
- Built-in rack and chassis slide mounting
- Solid-state, relay, digital or fiber optic switching
- Built-in forced air cooling with monitoring
- Field proven performance and reliability
- BITE for superior performance
- International wide-range AC power capacity
- Intelligent front panel illuminated control keypad
- Long life high contrast VFD display
- Hinged front panel access to power supplies
- Free LabView VISA drivers
- Excellent product support and quality

**Audio & Video - Digital - RF/IF
ATE - Telemetry - Microwave**

**Universal
Switching
Corporation**

State-of-the-Art Switching Solutions
7671 North San Fernando Road
Burbank, CA 91505 USA

Call to get your
FREE catalog today!

Phn +1 818-381-5111
Fax +1 818-252-4868
Email sales@uswi.com
Web uswi.com

**Test &
MEASUREMENT
WORLD**

EDITORIAL STAFF

Chief Editor: Rick Nelson
rnelson@tmworld.com
ATE & EDA, Inspection, Failure Analysis, Wireless Test, Software, Environmental Test

Managing Editor: Deborah M. Sargent
dsargent@tmworld.com

Senior Technical Editor: Martin Rowe
mrowe@tmworld.com
Instruments, Telecom Test, Fiber-Optics, EMC Test, Data-Analysis Software

Assistant Managing Editor: Naomi Eigner Price
neprice@tmworld.com

Contributing Technical Editors:

Jon Titus, jontitus@comcast.net
Bradley J. Thompson, brad@tmworld.com
Steve Scheiber, sscheiber@aol.com
Greg Reed, tmw@reedbusiness.com
Richard A. Quinnell, richquinnell@att.net

Editorial Intern: Jessica MacNeil

Publisher: Russell E. Pratt

Senior Art Director: Judy Hunchard
Senior Art Director/Illustrator: Dan Guidera

Director of Creative Services: Norman Graf
Prepress Manager: Adam Odoardi

**Reed Business Information-US,
A Division of Reed Elsevier Inc.**

CEO: Tad Smith
President, Boston Division: Mark Finkelstein
CFO: John Poulin

HOW TO CONTACT T&MW

EDITORIAL:

225 Wyman St.
Waltham, MA 02451
Phone: 781-734-8423
Fax: 781-734-8070
E-mail: tmw@reedbusiness.com
Web: www.tmworld.com

SUBSCRIPTIONS:

For address changes, cancellations, or questions about your subscription, please contact:

Customer Service
Reed Business Information
8878 S. Barrons Blvd.
Highlands Ranch, CO 80129
Phone: 800-446-6551
Fax: 303-470-4280
E-mail: subsmail@reedbusiness.com
Web: www.getfreemag.com/tmw

CIRCULATION:

Angelique L. Vinther
303-470-4296;
angelique.vinther@reedbusiness.com

LIST RENTAL:

Julie Cronin, jcronin@dm2lists.com

GENERAL AD SALES AND MARKETING: 800-438-6597

REPRINTS:
The YGS Group
800-290-5460, ext. 149;
tandmw@theygsgroup.com

**Subscribe to T&MW online:
www.getfreemag.com/tmw**

 Reed Electronics Group

Carts sturdy enough to shoulder
some serious responsibility.

Convoi™

As you work throughout your lab, you want carts and work tables that are rock solid and built to last. That's why Anthro develops lab furniture that is tough but also modular enough to fit all the applications you have. With the myriad of choices we offer, you'll be able to configure solutions for any lab layout. So call the friendly and knowledgeable folks of Anthro at [800.325.3841](tel:800.325.3841) or visit anthro.com/tmworld.

Trolley

AnthroBench

Zido®

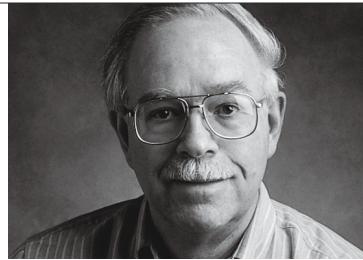
Technology Furniture®
800.325.3841
anthro.com/tmworld

Stay on course in WiMAX.

Test & measurement solutions from the last mile to the last inch.

Wherever you're headed in WiMAX, we have the test & measurement technology to help you stay on course.

From high end to field-portable, from signal generation to spectrum analysis, from R&D lab to production line, from the last mile to the last inch, our complete range of instruments covers all test & measurement needs for WiMAX development, production, and deployment. We can help ensure that your WiMAX solution is performing to spec – wherever the last mile may take you.



www.rohde-schwarz.com/ad/wimax

Please visit us at the
Mobile World Congress in Barcelona
Hall 1, booth 1D59 and 1C50

 ROHDE & SCHWARZ

BRAD THOMPSON
CONTRIBUTING TECHNICAL EDITOR
brad@tmworld.com

Sometimes, a voltmeter is all you need

Two days before Christmas, our two-year-old Toshiba DVD player refused to play. Its 90-day warranty had long expired, and even if I could find a service shop, repairs would cost far more than a new player. Like most consumers, I immediately thought about purchasing a replacement. Venturing into holiday traffic and retail madness, however, didn't appeal to me. Surely, my collection of state-of-the-art (circa 1994) test equipment could see me through the repair process?

On the minus side, I had no schematic diagram for the DVD player. And given manufacturers' propensity to pack ever more functions into custom-designed, fine-pitch "jungle" ICs, a major component failure would be irreparable.

Gaining access to the DVD player's innards proved surprisingly easy. I removed three screws and a thin sheet-metal cover, revealing three subassemblies—a single-sided power-supply board, a disc transport, and a double-sided multifunction board. I connected the player's audio outputs to my workbench audio amplifier and loaded Miles Davis' "Kind of Blue" CD. The disc spun and music played, albeit weakly and with great distortion—Miles sounded

as if he were spitting in his horn.

Thinking that a solder joint had failed, I tapped and wiggled components on the multifunction board, with no effect. Then I recalled the First Axiom of Troubleshooting: Always check the power supply. Fortunately, the supply board's silk-screened component legend specified the voltages conveyed via ribbon cable to the multifunction board.

Reaching for a voltmeter, I quickly discovered that the -12-V output read zero volts. Unsoldering a Zener diode didn't restore the voltage, but unsoldering a 470- μ F, 16-V electrolytic capacitor did. I found a replacement in my component collection, and minutes later Miles sounded like Miles should. Incidentally, the failed capacitor appeared perfectly normal, with no bulging ends or leaking electrolyte common to counterfeit capacitors.

So, even if your normal workday takes you far away from electronic hardware, don't be afraid to tackle the next piece of malfunctioning consumer electronics in your household.

Sometimes, a voltmeter is all the instrumentation you'll need. **T&MW**

WHAT TO DO WHEN YOU DO IT YOURSELF (DIY)

Consumer-goods manufacturers vary greatly in the quality of their post-sales support, but it's always a good idea to visit the manufacturer's Web site and review a copy of the user's manual for a malfunctioning product (if available).

If you've never attempted to service anything electronic, begin by visiting Sam Goldwasser's Repair FAQ Web site: www.repairfaq.org/sam/wiserfaq.htm

Proceed to the main table of contents: www.repairfaq.org/REPAIR/F_Repair.html

...and carefully review these safety notes here. Household electronics can kill you! www.repairfaq.org/sam/safety.htm

This forum offers user-oriented posts for specific product-failure complaints: forum.eserviceinfo.com

Sams Technical Publishing, founded by the granddaddy of service-information providers, Howard W. Sams, offers schematics and service information for many home-entertainment products: www.samswebsite.com

If you decide NOT to DIY, you can locate a service shop by visiting the following site. Unfortunately, the NESDA shop closest to our rural New Hampshire home is 52 miles away: www.nesda.com

These are difficult times for independent electronics service shops caught in a squeeze between the high cost of doing business and the low selling prices of products. For a view from a small service company, go to: www.consumeraffairs.com/home_electronics/elec_service.html

Not every warranty yields a successful repair. Ripoff Report offers consumer protection information and also a litany of horror stories, many involving large-screen TV receivers: www.ripoffreport.com/consumer_resources.asp

Credence shrinks to maintain profitability

Credence Systems has reported that it achieved profitability for its fourth quarter and for its fiscal year that ended November 3, 2007. That marks a milestone the company hadn't expected to reach until the end of 2008, according to Lavi Lev, Credence's president and CEO. In an effort to maintain profitability, the company announced a retrenchment that will cause it to shrink by about 30%. The move will result in about 500 job cuts in Europe and North America; about 100 jobs will be added in Armenia and East Asia as Credence augments R&D efforts and regroups to better serve its Asian customers.

In a phone interview, Lev said that the retrenchment will focus the company on the consumer semiconductor test market. "We have a pretty strict filter" that defines the consumer space, Lev said. "We want to go after markets that are constantly growing, and we want to make sure there are multiple customers for our products. Dependency on a single customer is not healthy for a company of our size."

The company will target consumer applications with its ASL, Diamond, and Sapphire (except for the Sapphire DPI) platforms, which represented 53% of Credence's business in 2007, Lev said. He cited the ASL platform (pictured) as a particularly successful one, with more than 3000 systems deployed worldwide and with an estimated 6000 engineers worldwide trained on it. www.credence.com. (To read our complete interview with Lev, see www.tmworld.com/credence_lev.)

JDSU acquires Westover Scientific's FO division

JDSU recently acquired the fiber-optic division of Westover Scientific, which manufactures specialized fiber-inspection microscopes that are used to detect dirt and other contaminants in fiber-optic networks. Westover Scientific's fiber test business includes approximately 80 employees and had calendar 2007 revenues of more than \$15 million. Its products will be integrated with JDSU's Communications Test & Measurement business. www.jdsu.com.

EADS receives US Navy contract

EADS North America Test & Services has been awarded a multiyear performance-based logistics (PBL) contract for the support of US Navy aircraft engine test systems. The contract is for material support, global repair services, and obsolescence management of the test systems, which are used to test jet and turboshaft engines on Navy fighter aircraft and helicopters.

Awarded by the Naval Air Warfare Center Aircraft Division at Lakehurst, NJ, the contract covers the US Navy's Jet Engine Test Instrumentation (JETI)

and Shaft Engine Test Instrumentation (SETI) systems. To date, 32 JETI and four SETI systems have been acquired by the Navy for deployment aboard aircraft carriers and in land-based installations.

EADS North America Test & Services' support initially will be provided in a three-year ramp-up phase, which is to be followed by a 10-year, full-scale PBL program. The total value of the contract is \$4.1 million. www.eads-nadefense.com.

CALENDAR

Measurement Science Conference, March 10–14, Anaheim, CA. Sponsored by the Measurement Science Conference, www.msc-conf.com.

APEX and IPC Printed Circuits Expo, March 29–April 3, Las Vegas, NV. Sponsored by IPC, www.goipcshows.org.

SAE World Congress, April 14–17, Detroit, MI. Sponsored by the SAE, www.sae.org.

See our complete calendar at www.tmworld.com/events.

PCB Piezotronics creates aerospace division

PCB Piezotronics has formed a PCB Aerospace & Defense Division group at the company's headquarters in Depew, NY. The group will specialize in products and programs for the aerospace, civil and military aviation, defense, homeland security, nuclear, and test and measurement markets.

Products include space-rated accelerometers; sensors and instrumentation for unmanned aerial vehicles, helicopters, fixed-wing aircraft, and ground vehicles; high-temperature engine vibration-monitoring sensors; and launch and separation shock sensors. The group will also provide targeted applications engineering. Overseeing the new division as senior director will be Ronald J. Livecchi, a 30-year aerospace industry veteran. wwwpcb.com.

Agilent wins Asian WiMAX contract

The Telecommunications Technology Association (TTA)—a test and certification institution for Asia—has awarded Agilent Technologies a contract for Mobile WiMAX Protocol Conformance Test (PCT). Headquartered in

(continued on p. 21)

News briefs (continued from p. 12)

Korea, TTA provides Mobile WiMAX testing and certification services and will employ Agilent's N6430A Mobile WiMAX PCT and development system in its test platform.

The N6430A provides tools for 802.16-2004/Cor2 D3 Mobile

WiMAX PCT and development testing, with a scripting interface to a fully functional radio bearer. The TTA develops standards and provides testing and certification for IT products. It is also a WiMAX Forum Designated Certification Lab. www.agilent.com.

Spectrum analyzers process "images"

Tektronix has added its DPX waveform image processor to the midrange line of RSA3000B real-time spectrum analyzers, making it possible for you to view the time-varying characteristics of RF signals. The RSA3000B series now lets you use the same color-graded persistence available on the company's high-end spectrum analyzers and oscilloscopes.

With color-graded persistence, the RSA3000B can capture frequency-hopping signals such as Bluetooth and wireless LAN that can interfere with fixed-frequency signals. Other applications include detecting of illegal signals in a frequency band. The analyzer can process 48,000 waveforms/s. You can use the persistence mode to find interfering signals, then switch to frequency-domain triggering to capture, store, and analyze those signals.

The RSA3000B spectrum analyzers include compliance test support for ISO 18000-7, the standard that defines the air interface for RFID products. They also support compliance tests for ISO 15693-3, the standard for vicinity cards.

Base prices: \$34,000–\$53,000, depending on bandwidth. Tektronix, www.tektronix.com.

Isolate and measure EMI on cables

The ISN T8 impedance-stabilization network from Teseq lets you measure conducted common-mode electromagnetic interference (EMI) on up to four unshielded single-balanced pairs of cables. The ISN T8 can couple or decouple equipment under test (EUT) from other equipment necessary to operate the EUT. Thus, you can measure common-mode signals while running your EUT with actual loads. You can use the network to decouple equipment with Ethernet ports up to 1000Base-T from other equipment.

The ISN T8 consists of one basic network (ISN T800) with D-sub-25 connectors and longitudinal conversion loss (LCL) adapter sets for Cat-3 and Cat-5 cables. It has a frequency range of 150 kHz to 30 MHz; maximum line-to-ground voltage is 63 VAC and 100 VDC. Maximum current ratings are 400 mA per line and 800 mA per pair.

Optional connectors include prewired RJ11 and RJ45 adapters (the ADS T800 and the ADS T8x0) for common pin configurations. The ADS T800 adapter set lets you connect RJ45 sockets, and the ADS T8x0 offers changeable pin arrangements with 1-mm banana connectors for all pin combinations of RJ11 and RJ45 connectors. Base price: \$3,890. Teseq, www.teseq.com.

Editors' CHOICE

PXI Switches

RF and Microwave

- 21 different modules
- From DC to 26.5 GHz
- Less than 2 dB of insertion loss

High Voltage, Power

- Up to 600 V or 12 A
- UL and CE certified

High Density, More Flexibility

- Up to 512 crosspoints or 198 channels per slot
- NI Switch Executive switch management software

>> Find the right switch for your system at ni.com/switches

800 891 8841

 NATIONAL INSTRUMENTS™

©2007 National Instruments Corporation. All rights reserved. National Instruments, NI, and ni.com are trademarks of National Instruments. Other product and company names listed are trademarks or trade names of their respective companies. 2007-8543-101

Everything you need in data acquisition

No wonder Agilent's 34970A is so popular

Agilent 34970A – Data Acquisition System

- 6 1/2 digit DMM with 22-bit resolution and 0.03% accuracy
- Scanning up to 250 channels per second
- RF switching up to 2 GHz
- Free Agilent BenchLink software

With 120 channels of data logging, and enough built-in memory to hold more than a week's worth of data, you can set up your Agilent 34970A data acquisition system to take measurements while you attend to more pressing matters. Like more tests.

The 34970A allows you to continuously monitor multiple measurements whenever you're ready. Built-in signal conditioning reacts to temperature, voltage, current, resistance, frequency, and period measurements.

Find an Agilent authorized distributor for fast delivery at www.agilent.com/find/Agilent34970A and learn more about what makes the 34970A the obvious choice in data acquisition.

© Agilent Technologies, Inc. 2008

Agilent Technologies

Agilent Authorized Distributor

800-832-4866 www.techni-tool.com/agilent.htm

PCs change quickly; test setups don't

Personal computers have changed drastically since engineers started using them to control instruments. Ten years ago, a typical PC had two serial ports and a parallel port. Today, you may get one serial and no parallel ports. Desktop PCs used to have ISA slots. Now, PCI slots are giving way to PCI Express slots.

Today's PCs have as many as 10 USB ports and an Ethernet port. If you need a legacy port, you must buy an adapter or use an industrial computer. Of course, test engineers have been adding IEEE 488 ports to their PCs for years. Many test engineers use adapters for older buses, because change comes far more slowly to the engineering community, where test systems may operate for many years.

That's not to say that the test community hasn't adopted today's I/O ports. Many instruments use USB and require a PC for the user interface and data storage. That started in 1998 when IOtech and National Instruments in-

troduced USB data-acquisition modules (Ref. 1). Today, USB-based oscilloscopes, digital I/O controllers, and logic analyzers are available. Many bench instruments have USB ports. For some, USB is the only I/O port, although instruments still feature RS-232 or IEEE 488.

USB gained acceptance as an instrumentation control bus once USB 2.0 ports became available. "For instrumentation, USB 2.0 was essentially USB 1.0," commented Chuck Cimino, marketing director at Keithley Instruments.

USB flash drives have replaced floppy-disk drives as the easiest way to transfer data between instruments and computers. With capacities up to 8 Gbytes (photo), USB flash drives can handle loads of data, and just about every engineer now carries or wears one.

Ethernet is the other major change in communication ports, and it has

created a bit of a gap between generations of engineers. "The new engineers coming out of school understand networking far better than they understand GPIB and SCPI," said Brian Fetz, program manager at Agilent Technologies. "The industry is already starting to change, and the change will accelerate."

USB flash drives have become the new floppy disks. Courtesy of SanDisk.

USB and Ethernet continue to evolve. All new PCs have 100-Mbps Ethernet ports—that's plenty of speed for test applications—and some network-interface cards offer 1-Gbps speeds. USB 2.0, currently at 480 Mbps, may evolve into USB 3.0 with speeds up to 4.8 Gbps running over an optical link. USB 3.0 was demonstrated at the 2007 Intel Developer Forum, although it will be several years before that port is available on everyday PCs.

In most test applications, current PC bus speeds are adequate. Many instruments perform data reduction for you, so the PC's processor often doesn't have to process data. For example, many instruments can perform signal processing by using techniques such as fast Fourier transforms (FFTs). Board-based instruments may contain processors or field-programmable gate arrays (FPGAs) that decimate data down to just the information you need. **T&MW**

DASYLab 10 introduced

The DASYLab 10 graphical test-programming software from Measurement Computing adds a module called Diagram, which you can configure for time-domain plotting as Y/t, X/Y, or X/t or as a data-chart recorder. Version 10 also lets you process data, such as for calculating FFTs, in any block size. www.measurementcomputing.com.

Industrial PC has multiple I/Os

Advantech has introduced the UNO-2176 industrial PC, which has four serial ports, two LAN ports, two USB ports, eight digital control inputs, and eight digital control outputs. The computer is powered by either a Pentium M or Celeron processor and runs Windows 2000/XP, Windows XP Embedded, or Windows CE. www.eautomationpro.com/us.


Strategic Test unveils PCIe waveform generator

The new Model 6110 two-channel 125-Msample/s 8-bit arbitrary waveform generator card plugs into a PC's PCI Express slot. Each channel has its own digital-to-analog converter (DAC), and the card provides 4th and 5th order Butterworth low-pass filters for waveform reconstruction, with bandwidths of 25 MHz, 5 MHz, or 500 kHz. www.strategic-test.com.

REFERENCE

1. Rowe, Martin, "USB Proves Ready for T&M Tasks," *Test & Measurement World*, January 1999. www.tmworld.com/article/CA187554.html.

Fast Solutions to your ATE Set-up Puzzle

With ReFlex Power™ from Xantrex there's a fast and efficient solution to your ATE and production test power configurations.

The flexibility you want

ReFlex Power is a flexible and reconfigurable platform

- ▶ AC power, DC power and electronic loads in plug-in modules
- ▶ Up to 12 modules and 6 kW of output power per mainframe
- ▶ Up to eight chassis and 95 modules controlled by a single LXI Class C controller module

The precision you need

NEW precision triggers and sequences improve performance

- ▶ Relieve the test system controller of sequencing tasks
- ▶ Reduce test time
- ▶ Handle complex sequences and enable precision timing

To learn more about ReFlex Power, go to:

www.programmablepower.com/reflex

The ReFlex Power™ mainframe can hold up to 12 single-slot modules or combinations of single, dual and triple-slot modules to configure the system as needed.

Programmable Division of Xantrex Technology Inc.
9250 Brown Deer Road, San Diego, CA 92121
858-458-0223 ■ sales@programmablepower.com

SUJAN SAMI

SENIOR RESEARCH ANALYST, FROST & SULLIVAN

www.frost.com

Luminous growth in MEMS test equipment market

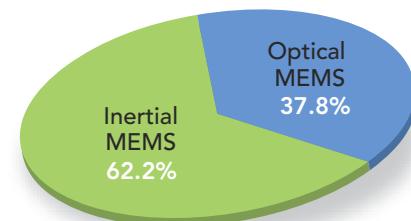
Microelectromechanical systems (MEMS) include several mechanical elements, such as sensors and actuators, that are integrated on a common silicon substrate through microfabrication technology. MEMS can also be referred to as smart matter, micromachines, or microsystems technology (MST).

The MEMS industry has witnessed large growth rates in recent years in applications including cell phones, digital still cameras, camcorders, laptops, MP3 players, and robots. The market for MEMS device test, however, has not grown significantly in comparison to the growth of the MEMS device market itself. One reason for that lack of growth remains the lack of education among end users on the importance of testing MEMS devices.

Dual testing of MEMS devices

MEMS devices contain electrical and mechanical components. In today's testing environment, it is much easier to test the static electrical characteristics using test methods such as wafer probing, electrical trimming, and final test at temperature. Mechanical testing verifies the resistance to mechanical shock, stiction, and other MEMS-specific failure modes.

The vendors in the MEMS test market face a huge challenge to per-


form dynamic testing on the MEMS devices. A new generation of test equipment is required for testing under severe conditions—such as high temperature, pressure, and humidity—and the new equipment must account for stiction, which refers to the friction between moving parts inside a chip due to factors such as over-range of input signals or electromechanical instabilities.

Wafer-level testing

Testing of MEMS devices at an early production or preproduction stage is essential to reducing production costs and time to market. Once the packaging is complete, any test results for a failed device will lead to an increase in production costs. The market is slowly moving toward a situation where there are several solutions available for testing MEMS devices under environments such as high pressure, near-vacuum, and severe temperatures.

The testing of the sensor elements of either inertial MEMS or optical MEMS (MOEMS) is critical before the packaging is done. (MOEMS are used in applications such as IR imagers, spectrometers, bar-code readers, maskless lithography, adaptive optics, and automotive heads-up display.) But certain challenges exist when perform-

ing testing at an earlier stage, including trying to simulate the exact environment under which the device might be used at a later stage. In addition, the lack of standards and specific test equipment extends the challenge to test these MEMS devices. Currently,

Test equipment for optical and inertial MEMS devices generated worldwide revenues of \$56.5 million in 2007, with inertial MEMS equipment making up the majority of the total.

Note: All figures are rounded.

there is little off-the-shelf MEMS test equipment in the market.

In a recent market study, we found that the total world MEMS test-equipment market generated revenues of \$56.5 million in 2007, which represented a growth rate of 10.1% over the previous year. In 2007, test equipment for inertial MEMS and MOEMS contributed approximately 60% and 40%, respectively. T&MW

PCB book-to-bill

The book-to-bill ratios for the North American rigid printed-circuit board (PCB) industry and combined rigid and flex PCB industries each stood at 1.06 in November, with both down from 1.08 in October. The North American flexible circuit book-to-bill fell back to 1.02 in November, down from 1.10 in October. www.ipc.org.

UWB market to take off

The market for ultrawideband (UWB) silicon is finally beginning to take off, reports In-Stat. Although regulatory hurdles over UWB still persist worldwide, the first UWB-enabled notebook PCs shipped in 2007, the market-research firm says in the \$3695 report,

"Ultrawideband 2007: PCs Finally Hit the Global Market." The report predicts that more than 400 million UWB-enabled devices will ship in 2011. www.in-stat.com.

Semiconductor equipment book-to-bill

North American-based manufacturers of semiconductor equipment posted \$1.15 billion in orders in November 2007 (three-month-average basis) and a preliminary book-to-bill ratio of 0.82. The ratio (final) stood at 0.80 in October. The November bookings figure is about 2% less than the final October 2007 level of \$1.18 billion and about 19% less than the \$1.43 billion in orders posted in November 2006. www.semi.org.

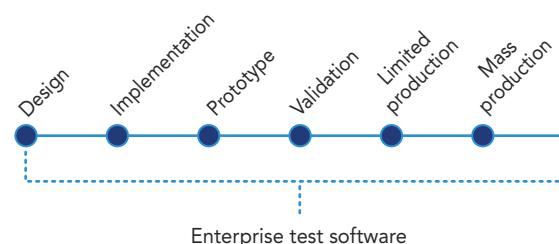
WEBCAST

Using enterprise software to maximize test impact

In a *Test & Measurement World* career and salary survey last year (Ref. 1), 73% of respondents cited "time pressures" as one of the three biggest challenges they face in their current jobs.

In the Webcast "Maximizing the impact of test engineering," Jean-Yves Allard, VP of R&D at Averna, explains that he and his colleagues have conducted their own research in an effort to identify how test engineers might make better use of the time available to them. Time pressure, he reports, is exacerbated by accelerated time-to-market deadlines, which in turn impinge on time available for training and for managing product and test data.

Specific key time wasters, Allard reports, include product parameter and limit updates and database-integration


chores. He found that 70% of engineers rely on ubiquitous software programs like Excel to analyze test data and have no easy way of integrating their results

test-engineering challenges across a product's life cycle and across geographically dispersed design and production locations. The Webcast, sponsored by Averna and *Test & Measurement World*,

was presented live on December 5, 2007. You can view the archived version at www.tmworld.com/webcasts to see examples of how Harris employed such software to launch a new RF product line, while Nortel used a similar approach to manage version

control, correlate product lines, and enhance test coverage.

Rick Nelson, Chief Editor

Enterprise test software can support product life-cycle management from the design phase to the repair and maintenance phase.

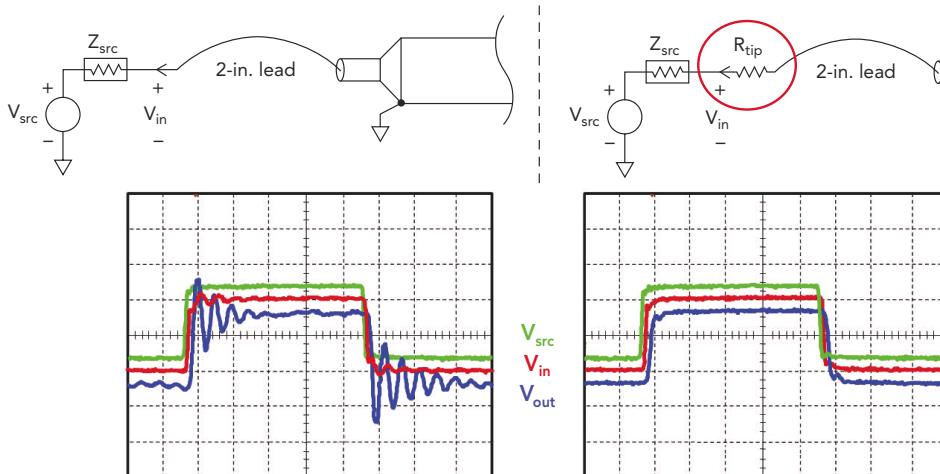
with other programs. He says that 50% want a reporting tool integrated with their test software, while 96% would benefit from a centralized specs/limits and conditional-test-management tool.

Allard proposes the use of enterprise test software as a method of meeting

REFERENCE

"Salary survey 2007," *Test & Measurement World*, www.tmworld.com/salary_2007.

WEBCAST


Oscilloscope probe hints

An oscilloscope is useless without the probes necessary to get signals from a device under test (DUT) to the instrument. And probes themselves are far more complicated than simple, ideal conductors that transmit those signals. For effective probing, you'll need to

know when to deploy passive or active probes, how to check for probe loading, how to compensate probes, how to deal with resonance, and how to make low-current and floating measurements.

In the Webcast "Six hints for better scope probing," Agilent Technologies

product manager Jae-yong Chang covers all these topics. He notes, for example, that passive probes suffice up to 600 MHz, while active probes operate to 13 GHz. He demonstrates a two-probe technique that indicates probe loading. He recommends that probe impedance

If you need to add a wire to a probe tip to make a measurement in a crowded environment, you can use a resistor measuring 100 Ω or so to damp resonance.

Courtesy of Agilent Technologies.

Test & Measurement Software

be at least 10 times source impedance and that probe bandwidth be at least five times signal bandwidth.

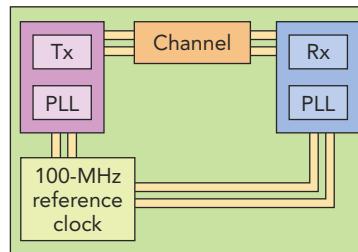
In addition, Chang provides sample waveforms that suggest when you need to compensate your probes, and he describes how to adjust a probe's RC network divider to maintain an appropriate attenuation ratio over the entire probe bandwidth. He provides details on using AC/DC current clamp-on probes to make the low-current measurements necessary to characterize and troubleshoot the signals common to ubiquitous battery-operated consumer

products, noting that it's best to degauss and perform offset adjustments on these probes before each measurement.

He also covers measurements on high-power DUTs, describing how to use differential probes and isolation transformers. Finally, he describes a nifty method of using a probe-tip resistor (**figure**) to damp resonance.

You can view the archived Webcast (presented live December 12, 2007, and sponsored by Agilent Technologies and *Test & Measurement World*) at www.tmworld.com/webcasts.

Rick Nelson, Chief Editor


WEBCAST

Achieving PCI Express physical-layer compliance

With the emergence of the PCI Express 2.0 specification, data-transfer rates doubled from 2.5 GT/s to 5.0 GT/s. To develop effective receiver and transmitter tests for this faster rate, you'll need an understanding of PCI Express specifications as well as knowledge of system architectures, receiver tolerance measurements, stress elements, and transmitter PLL response.

In the 1-hr Webcast "Pass PCI Express physical layer compliance testing the first time," Bent Hessen-Schmidt, VP of business development at SyntheSys Research, covers these topics and describes trends in jitter compliance methodology.

Schmidt cites evidence of the difficulties of migrating to PCI Express 2.0: During the first half of 2007, only 10% of 2.5-GT/s PLL designs failed, while 60% of 5-GT/s implementations did. He notes that it is important that both the transmitter and receiver in a common-clock PCI Express design (**figure**) should track the single reference clock nearly identically to prevent clock jitter from contaminating data. He describes using a spectrum analyzer and a clock PLL analyzer to characterize PLL, contending that the clock analyzer provides better accuracy and repeatability.

Path length differences in this common-clock-architecture-based PCI Express design can contribute up to 12 ns of delay. Other factors that can degrade transmitter (Tx) and receiver (Rx) performance include dispersion resulting from low-cost circuit-board material, crosstalk, and reflections.

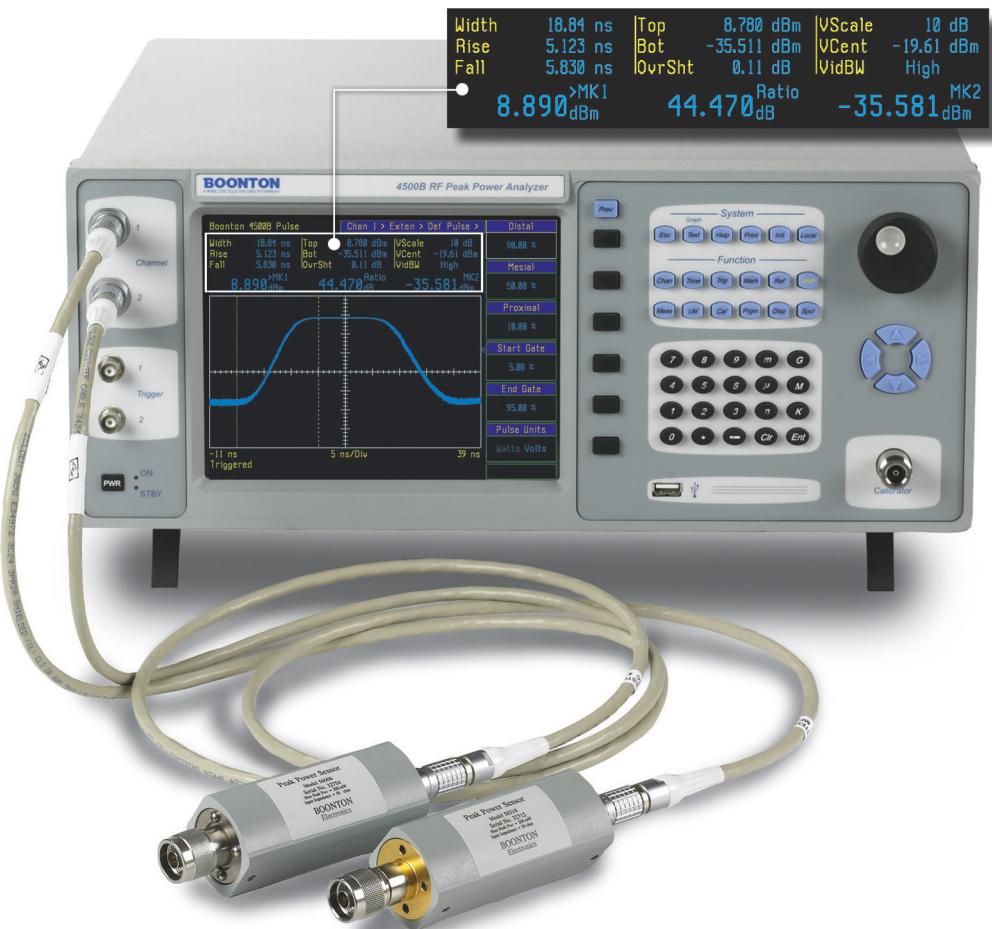
Schmidt ends by describing dual-port measurements and saying that test methods are evolving to favor the use of sampling instruments as PCI Express speeds move toward 8-GT/s, with the concomitant 20-GHz fifth-order harmonics.

The Webcast, sponsored by *Test & Measurement World*, EDN, and SyntheSys Research, was presented live December 11, 2007. You can view the archived Webcast, which provides detailed descriptions of practical jitter-measurement techniques, at www.tmworld.com/webcasts.

Rick Nelson, Chief Editor

measure
FOUNDRY™

Open. Powerful.
Application Builder for
Test & Measurement
Systems.


Build powerful test applications without programming. Acquire, display, and distribute applications through Measure Foundry's patented drag-and-drop design.

DATA TRANSLATION®

www.datatranslation.com

800-525-8528

We've Taken Performance To A New Peak.

BOONTON 4500B PEAK POWER ANALYZER AND FAST PEAK SENSORS

Introducing the 56006 and 58318 peak power sensors optimized for use on the 4500B peak power analyzer. The 56006 peak power sensor features a unique combination of industry leading video bandwidth and unsurpassed dynamic range that make it ideal for measuring communication signals in 3G and future 4G wireless applications. The 58318 peak power sensor offers a combination of broad RF frequency range and fast risetime measurement capability for the most demanding military and commercial pulsed RF radar applications.

56006

- RF Frequency range to 6 GHz
- <7 nsec risetime
(typical video bandwidth up to 65 MHz)
- 70 dB dynamic range (pulse mode) or
80 dB dynamic range (modulated mode)

58318

- RF frequency range to 18 GHz
- <10 nsec risetime
(8 nsec typical)
- 44 dB dynamic range (pulse mode) or
54 dB dynamic range (modulated mode)

BOONTON
A WIRELESS TELECOM GROUP COMPANY

PROJECT PROFILE

DATA ACQUISITION

Flying tests

DEVICE UNDER TEST

Jets and propeller-driven aircraft used by individuals, corporations, and the military.

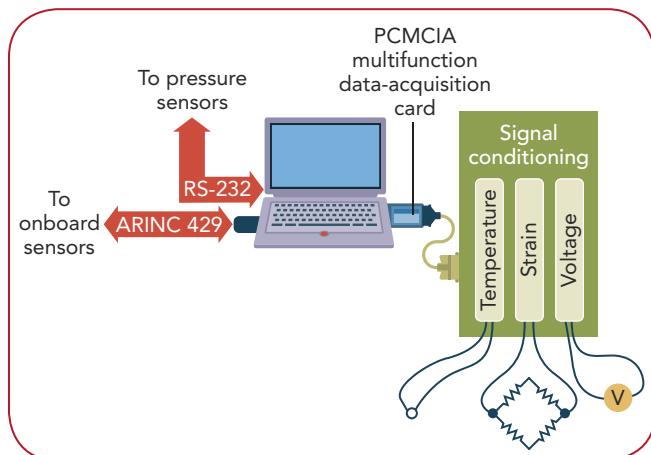
THE CHALLENGE

Measure aircraft performance following an engineering change. Develop a system that flight-test engineers can use to measure temperature, fuel pressure, oil pressure, air speed, and strain. Customize the hardware and software for each test.

THE TOOLS

- GE Fanuc: ARINC bus interface card for laptop computers. www.gefanucembedded.com.
- Honeywell: pressure transducers with RS-232 outputs. www.honeywell.com.
- National Instruments: signal-conditioning chassis, strain-gage conditioning card, thermocouple signal-conditioning card, data-acquisition card, graphical programming language. www.ni.com.
- Omega Engineering: thermocouple and RTD temperature probes. www.omega.com.
- Paro Scientific: pressure transducers with RS-232 outputs. www.paroscientific.com.
- Vishay: strain gages. www.vishay.com.

PROJECT DESCRIPTION


Like many manufacturers, aircraft manufacturer Hawker Beechcraft (Wichita, KS, www.hawkerbeechcraft.com) must make small changes to its products to improve quality or replace obsolete parts. Senior electrical engineer Rex Pawlak and other instrumentation engineers have developed flexible data-acquisition systems that flight-test engineers use in flight to evaluate such design changes.

Flight-test engineers use the systems to measure parameters such as air speed, altitude, fuel pressure, and oil pressure using either the aircraft's built-in sensors or independent sensors. Each system includes a notebook computer and, when needed, a signal-conditioning chassis for the independent sensors (**figure**). "We prefer to use sensors with digital outputs over those with analog outputs," said Pawlak. "Digital outputs require fewer wires." A test may include measurements using strain gages mounted on a wing spar or other structural component.

When a design engineer requests a test from the instrumentation group, the instrumentation engineers will first investigate whether they can make the measurements using sensors already built into the aircraft. The investigation includes comparing sensor accuracy to measurement requirements. If the built-in sensors meet the requirements, Pawlak will configure a system that retrieves data from the aircraft's ARINC 429 bus. "Sensors used in aircraft are getting accurate enough for test work," noted Pawlak.

If test requirements go beyond the capabilities of the built-in sensors, then additional sensors will be fitted to the aircraft. The engineers will connect thermocouple and RTD probes for temperature measurements and strain gages for mechanical measurements to a chassis containing signal-conditioning modules. In addition, they may also connect pressure sensors to the computer through an RS-232 link configured in a daisy-chain topology.

A test may require 20 to 30 pressure transducers, although some need only two to five. After engineers specify the sensors, technicians install them in a test aircraft. Installing additional sensors often requires a technician to install tubes and connectors to systems such as fuel lines. Engineers will also customize the PC software to capture, display, and record the specified data. "We will customize the software to best match the needs of a flight-test engineer," said Pawlak. "For example, some prefer analog [dial] displays, while others prefer digital [numeric] displays."

A flexible data-acquisition system makes in-flight measurements on aircraft.

During a flight, a test engineer monitors the measurements on the screen and records data when the aircraft is "on condition." For example, if a test plan calls for pressure, temperature, or strain measurements at 35,000 ft, the test engineer won't record data during ascent and descent. Often, a test plan calls for test engineers to record data during multiple conditions.

LESSONS LEARNED

"When designing a data-acquisition system, always look for the simplest solution that meets the test requirements," said Pawlak. "RS-232 is the least invasive and most convenient solution, followed by monitoring the ship's internal bus. Use external sensors and signal conditioning only when needed."

Martin Rowe, Senior Technical Editor

Alfred Binder, test-handling manager, poses at Austriamicrosystems' headquarters in front of a photo-mask display that illustrates the diversity of products the company has produced over the past 25 years.

UNTERPREMSTÄTTEN, AUSTRIA. Pursuit of excellence is a key motivator for Austriamicrosystems, a provider of mixed-signal ICs for power-management, sensor, and mobile-entertainment applications. The company employs innovative test and test-handling techniques to ensure the quality of the devices that it sells into communications, industrial, medical, and automotive markets.

Moritz Gmeiner, Austriamicrosystems' director of corporate communications, said the company focuses on highly integrated low-power and high-accuracy analog devices. The company, he said, has in its 25 years in business developed a significant amount of IP that it employs in the design and production of both standard ICs and custom ASICs. Available IP building blocks include ones dedicated to power-management, mobile-entertainment, wireline-communication, bus-system, car-access, metering, sensor, sensor-interface, medical, and high-voltage applications as well as general-purpose analog and digital functions.

ASICs, Gmeiner said, have historically made up the bulk of Austriamicrosystems' business, outpacing standard products by 80% to 20% five years ago. That's changing, though, as the company identifies high-volume opportunities for new standard ICs, which now make up close to a 40% share of the company's business.

In addition to providing standard and custom devices, the company also offers foundry services. In December 2007, Fingerprint Cards (www.fingerprints.com) became one of the most recent companies to take advantage of that service, announcing that Austriamicrosystems would manufacture its FPC1011C 30x18x2-mm fingerprint sensor chip that it uses in products ranging from fingerprint sensors and biometric processor ASICs to complete biometric submodules.

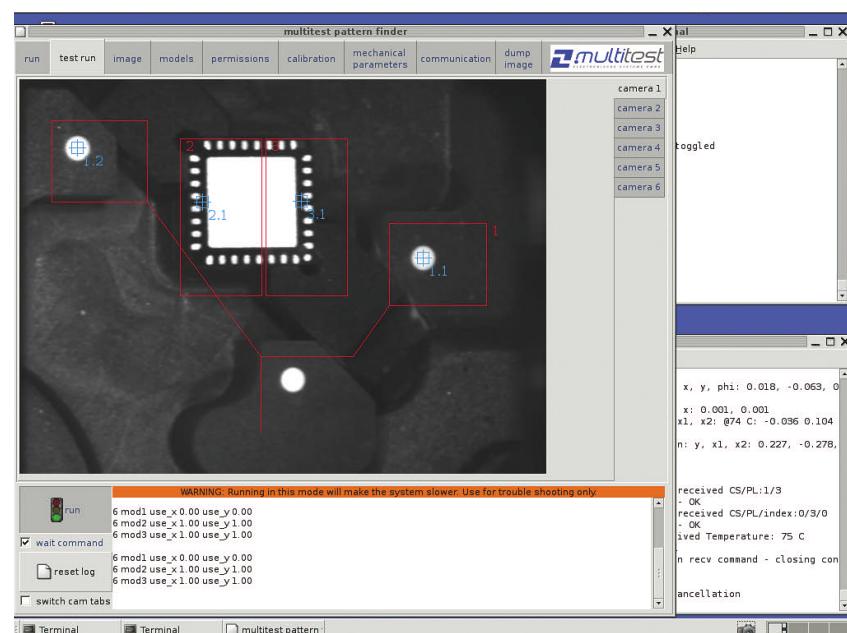
For its foundry customers, Austriamicrosystems offers the High Performance Interface Tool Kit (HIT-Kit), which is based on Cadence or Mentor Graphics design environments and supports all of

Austriamicrosystems' process technologies. The HIT-Kit comes with silicon-qualified standard cells, periphery cells, and general-purpose analog cells such as comparators, operational amplifiers, and low-power analog-to-digital and digital-to-analog converters. The kit also includes physical verification rule sets for use with the Cadence Assura and Mentor Calibre design rule checkers, as well as circuit-simulation models

A VISION-ALIGNMENT TECHNIQUE POSITIONS AUSTRIAMICROSYSTEMS' DEVICES FOR TEST WHILE THE COMPANY POSITIONS ITSELF AS A KEY SUPPLIER IN COMMUNICATIONS, INDUSTRIAL, MEDICAL, AND AUTOMOTIVE MARKETS.

HANDLING QUALITY

BY RICK NELSON, CHIEF EDITOR


that enable rapid design starts of mixed-signal and RF ICs. In addition to standard prototype services, Austriamicrosystems also offers analog IP blocks, memory (RAM/ROM) generation services, and packaging services in ceramic or plastic.

As part of its foundry offerings, Austriamicrosystems offers fast prototyping through its Multi-Project-Wafer (MPW) service, as well as offering full production, assembly, and test services. In 2008, Austriamicrosystems will offer more than 150 MPW start dates, made possible through cooperative operations with research organizations such as CMP-TIMA (tima.imag.fr) and Fraunhofer IIS (www.iis.fraunhofer.de) and with prototyping services such as Europractice (www.europractice-ic.com) and MOSIS (www.mosis.com).

To take advantage of the MPW service, customers deliver their completed GDSII data at specific dates, and Austriamicrosystems then supplies untested packaged samples or dies within a short lead time—typically eight weeks for CMOS and 10 weeks for 0.35- μ m high-voltage CMOS, SiGe-BiCMOS, and embedded flash processes.

From mobile entertainment to automotive safety

The company's own designs find use in power-management and lighting-management applications in mobile devices such as cell phones. For mobile entertainment, the company makes a single-chip media player system as well as audio front ends that provide power

FIGURE 1. High-speed vision-alignment technology enables a pick-and-place handler to accurately position a device for insertion into a test contactor. Courtesy of Multitest.

equipment. For the automotive market, Austriamicrosystems makes bus-system chips as well as sensor and sensor interfaces and car-access devices. Gmeiner said that the company is a leader in FlexRay transceivers, and he explained that Austriamicrosystems is a pioneering company in time-triggered architectures (TTA) for safety-related x-by-wire (for instance, brake-by-wire or steer-by-wire) applications. He added that Austriamicrosystems is in a development partnership with Fujitsu (Ref. 1) related to TTA applications, under which Fu-

that these products can serve in electronic stability control applications and can monitor gearbox and gas-pedal positions.

Supporting the production of this plethora of products are six design centers in Austria, Italy, Switzerland, and India as well as a 200-mm wafer fab here. The company has a 0.35- μ m CMOS base process as well as modular specialty processes for high-voltage CMOS, SiGe, and embedded-flash/EEPROM fabrication. Production capacity is 8000 wafer starts per month. A cooperative effort with Taiwan Semiconductor Manufacturing Co. (www.tsmc.com) ensures access to state-of-the-art processes for both partners. In addition, Austriamicrosystems in 2007 began cooperating with IBM in the development of a 0.18- μ m high-voltage CMOS process that is expected to yield products in 2009.

MORITZ GMEINER:
THE COMPANY FOCUSES on
highly integrated low-power and
high-accuracy analog standard
and custom solutions.

management to support long play times—while also implementing digital rights management.

For the medical imaging field, Austriamicrosystems makes sensors and sensor interfaces that provide the accuracy and image-acquisition speed necessary to minimize patient x-ray doses in computed-tomography and digital x-ray

Fujitsu is integrating Austriamicrosystems' AS8221 FlexRay physical-layer high-bandwidth bus-transceiver technology with Fujitsu's 16-bit and 32-bit automotive microcontrollers.

The company also makes magnetic rotary encoder ICs that provide up to 12-bit resolution for industrial and automotive applications. Gmeiner noted

Product diversity imposes test challenges

Austriamicrosystems offers more than 80 package types—ranging from small outline ICs to ceramic pin grid arrays with up to 447 leads. The diversity of products that Austriamicrosystems makes poses significant test challenges with respect to functionality as well as packaging. A look

Same features, half the price?

It's true—just visit our website and see for yourself that our data acquisition prices are lower.

LOOK INTO MEASUREMENT COMPUTING—

we're the acknowledged world leader in low-cost data acquisition hardware and software. Our prices *are* better—as seen in the example at right, by as much as 50 percent! Our complete selection of robust, reliable products is backed by lifetime and money-back limited warranties, and a unique Harsh Environment Program. We also carry a wide array of data acquisition software solutions to match your application and level of expertise. And, as our customer, you'll always have phone access to an experienced engineer.

Once you've learned about us and our prices, you can stop paying too much for DAQ.

Call us or visit our website.

LOW PRICES • LIVE SUPPORT • 30-DAY MONEY-BACK GUARANTEE
LIMITED LIFETIME WARRANTIES • HARSH ENVIRONMENT PROGRAM

Here's just one example.

Product	Brand "A"	Measurement Computing USB-1608HS
Measurement Type	analog input (simultaneous)	analog input (simultaneous)
Number of Channels	6 single-ended	8 differential/8 single-ended
Throughput	225 kHz	250 kHz
Resolution (bits)	16	16
Voltage Ranges	±5V, 10V	±10V, ±5V, ±2V, ±1V
Unit Price	\$1,990	\$1,199
Price per Channel	\$331.67	\$149.88

Compare us to the others. See all our products at mccdaq.com.

► Call us today at (508) 946-5100

A complete selection of low-cost DAQ hardware—and software for every skill set

Do you make DATA DRIVEN DECISIONS?

DATA

Regardless of industry, signal type, or software preference, **you need data now.**

DRIVEN

For 20+ years, IOtech has led the industry by making data acquisition **easier for you.**

DECISIONS

Analyzed data gives you the answers to make informed decisions. **Decide on IOtech.**

TEMPERATURE | VIBRATION | STRAIN | VOLTAGE | SOUND | CURRENT | POSITION | FREQUENCY

ioTech

iotech.com (888) 890-3011 sales@iotech.com

at devices introduced in the fourth quarter of 2007 illustrates the diversity of the Austriamicrosystems product line's functionality and package styles:

- the AS1341 20-V step-down DC/DC converter in a 3x3-mm TDFN eight-pin package,
- the AS3693 and AS3694 LED drivers for LCD backlighting applications in TQFP64 packages,
- the AS1542 1-Msample/s, 16-input, 12-bit ADC in a 28-pin TSSOP package,
- the AS5305 high-speed, high-resolution magnetic linear motion encoder IC in a lead-free TSSOP20 package,
- the AS1358/59 and AS1361/62 LDO regulators in a five-pin TSOT23 package and a six-pin TSOT23 package, respectively,

• the AS1528/29 micro-power, 10-bit, 150-ksample/s ADCs in eight-pin 3x3-mm TDFN packages, and

- the AS1538 12-bit, eight-channel, low-power ADC in a 16-pin TSSOP package.

To ensure the quality of the products it produces, the company has test centers in Austria and in Calamba, the Philippines, that use high-end testers from LTX, with 45 testers deployed in Austria and 10 deployed in the Philippines, according to Wolfgang Peisser, director of backend operations. Peisser said Austria-microsystems chooses to rely on one test vendor, for which it can serve as a technology driver. A single test vendor, he said, helps the company leverage its test IP across the many types of devices. Fur-

ther, he noted, a single vendor provides the consistency demanded by automotive customers.

But although the company relies on a single test vendor, Peisser described the test facility as a "mixed floor," with each tester able to serve in wafer test, final test, and test development. This mixed approach, he said, helps ensure that personnel are knowledgeable about all the platforms, thereby enhancing stability within the test process.

In addition to the LTX testers, the company has chosen Multitest as its handler supplier; Austria-microsystems deploys 13 pick-and-place handlers and 13 gravity handlers in Austria plus five pick-and-place and 11 gravity handlers in the Philippines. Peisser said the company's mix of packages—ranging from tiny small outline transistor (SOT) devices to large ball-grid arrays (BGAs), complicates the test and handling process, requiring close cooperation among Austria-microsystems, LTX, and Multitest. He expressed support for the mechanical-interface standardization efforts of the Semiconductor Test Consortium's STIX committee (Ref. 2), but he added that interfacing a tester and handler is a complex problem that won't soon yield to standardization efforts.

Handling many package types

"Customer requirements are driving us to have such a broad portfolio of different packages, ranging from the smallest QFN to the largest BGA," said test-handling manager Alfred Binder, who explained that customer requirements for the smallest, thinnest packages present significant test challenges. For Austria-microsystems' smallest parts—such as 3x3 QFN (quad flat no-lead) packages—a simple mechanical handling operation no longer suffices. For such devices, Binder employs a Multitest MT9510 pick-and-place handler equipped with Multitest's vision-alignment technology (**Figure 1**). The technology can handle Austria-microsystems' 0.5-mm-pitch devices, and Binder said it will extend to 0.4-mm and even 0.3-mm pitches.

The vision-alignment technology employs multiple cameras to scan and align up to four devices simultaneously (for quad-site test) before the stroke-to-test-contactor operation occurs. Each device

STEFAN KRISTOFERITSCH/NPN WORLDWIDE

Alfred Binder contends with package styles ranging from tiny QFNs to large BGAs as he works to interface testers, load boards, and handlers.

ARIES® test sockets: with more of what you want... and less of what you don't!

More Performance... Aries ultra high frequency sockets have a mere 1 dB signal loss at up to 40 GHz!!! Center probe and Microstrip sockets deliver more than a half million insertions with no loss of electrical performance.

More Choices... Aries offer a full range of sockets for handler-use, manual test and burn-in...for virtually every device type, including the highest density BGA and CSP packages. Choice of molded or machined sockets for center probe and Kapton interposer models, too!

Less Cost... in addition to extremely competitive initial cost, Aries replacement parts and repair costs beat the competition, assuring you of lowest total cost of ownership.

Less Wait... Aries can deliver the exact sockets you need within 6 weeks.

So why settle? Aries makes it easy to get the world's best test sockets. Call or visit our web site to find out how!

 ARIES®
ELECTRONICS, INC.

Bristol, PA 19007-6810
(215) 781-9956 fax: (215) 781-9845
e-mail: info@arieselec.com
www.arieselec.com

Sensible Solutions... Fast!

High Voltage Pulse Generators

AVR Series

General-Purpose High-Voltage Pulse Generators
Ideal for Component Testing, and Pulsed Laser Diodes

AVR-3-B

- * 0 to 200 V, variable
- * 100 ns to 100 us
- * 10 ns rise and fall time

AVR-4-B

- * 0 to 400 V, variable
- * 100 ns to 100 us
- * 20 ns rise and fall time

AVR-5-B-B

- * 0 to 500 V, variable
- * 100 ns to 100 us
- * 30 ns rise and fall time

AVR-7-B-B

- * 0 to 700 V, variable
- * 100 ns to 100 us
- * 50 ns rise and fall time

AVR-8A-B

- * 0 to 1000 V, variable
- * 200 ns to 200 us
- * 100 ns rise and fall time

The AVR series of high-voltage pulse generators operate over a wide range of pulse widths, and offer fast rise times, reliable construction, and ease of use.

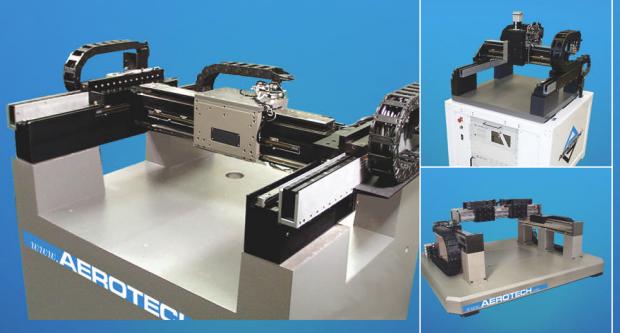
These instruments include IEEE-488.2 GPIB and RS-232 interfaces, and LabView drivers are available. Ethernet control is optional. Positive, negative, and dual polarity outputs can be provided. All models can be internally or externally triggered. A gate input and a sync output are provided, for maximum flexibility.

These models are ideal for pulse testing components such as resistors, attenuators, and transistors.

They are also useful for high-current testing of laser diodes. For example, by adding a 50 Ohm resistance in series with a laser, the AVR-8A-B can deliver a clean 20 Amp pulse, using standard coaxial cabling!

Online data sheets and pricing - www.avtechpulse.com
Enter your specifications into the "Pick the Perfect Pulser" search engine!

AVTECH
ELECTROSYSTEMS


NANOSECOND
WAVEFORM ELECTRONICS
SINCE 1975

BOX 265, OGDENSBURG
NY, 13669-0265
ph: 888-670-8729, +1-613-226-5772
fax: 800-561-1970, +1-613-226-2802
e-mail: info@avtechpulse.com
<http://www.avtechpulse.com>

Germany / Aust / Switz: Schulz-Electronic
France: K.M.P. Elec. Japan: Hikari, Inc.
Korea: MJL Crystek Taiwan, China: Quatek

AEROTECH GANTRIES

Proven by the world's most successful manufacturers

Customer

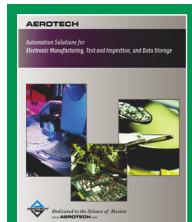
Top-five semiconductor and electronics metrology and inspection equipment manufacturer

Specifications

- Velocity to 3 m/s and acceleration to 5 g
- Dual Y-axis brushless linear servomotors
- Dual Y-axis linear encoders
- Optimized mechanical structure for high servo bandwidth
- Travel up to 1 m x 1 m

Aerotech designs and manufactures gantries for many of the largest manufacturers in the world. These systems are perfectly engineered to provide superior performance in applications as varied as pick-and-place, automated assembly, vision inspection, dispensing stations, and packaging applications. With our extensive experience and broad line of linear and rotary motors, linear-motor-driven and ball-screw stages, controllers, and drives, Aerotech can deliver the ideal gantry for your application.

Whether you require hundreds of high-performance gantries or a one-of-a-kind system, Aerotech is the gantry manufacturer of choice. We look forward to discussing your application.


Aerotech, Inc.

101 Zeta Drive, Pittsburgh, PA 15238

Phone: 412-963-7470

Fax: 412-963-7459

Email: sales@aerotech.com

Get **Automation Solutions for Electronic Manufacturing, Test and Inspection, and Data Storage** at

www.aerotech.com

Dedicated to the Science of Motion

AHV0108A

Measurement Application?

We Have Answers

is scanned and positioned separately, and all devices being contacted in parallel in multisite applications are aligned individually—without alignment information being transferred from one device to another. Without that alignment process, Binder said, yield can fall off two to three percent or more because of package tolerances.

The Austria test area, Binder explained, is 25 years old, and as it has grown, different generations of testers and handlers have appeared. “We have one of the first Synchromasters in Europe,” which was acquired 20 years ago,

perature range and accuracy. Automotive parts, such as the automotive version of the company’s new AS5140H contactless magnetic rotary encoder for accurate angular measurement over 360°, must be fully qualified to AEC-Q100 standards and specified for an extended ambient temperature range of -40°C to +150°C.

But apart from temperature range, maintaining proper device temperature during test also presents challenges. “For devices such as automotive devices, it is very, very critical to test them at the right temperatures,” said Binder. He ex-

WOLFGANG PEISSER: AUSTRIAMICROSYSTEMS chooses to rely on one tester and one handler vendor, for which it can serve as a technology driver.

he explained. The LTX Synchromaster testers have subsequently been augmented with new LTX Fusion systems.

Austriamicrosystems has been working with Multitest for 16 years and has some vintage MT850 gravity handlers installed, Binder said. The company has recently added MT9510 pick-and-place handlers. Binder explained that for some applications, he finds pick-and-place systems to be more reliable than gravity-feed machines because they avoid problems associated with tiny singulated devices sticking together. He said Austriamicrosystems is one of the first Multitest customers to employ a pick-and-place handler for use with 3x3-mm QFN packages.

Binder added that many gravity machines are dedicated to specific package styles—so, if a company purchases a dedicated gravity handler for a package that doesn’t generate projected sales, it could be stuck with a €250,000 handler it has no use for. With the Multitest pick-and-place handler, he explained, a simple €20,000 change kit is all that’s needed to adapt the handler for a new package. Then, should volumes be sufficient, a gravity handler can augment the pick-and-place machine.

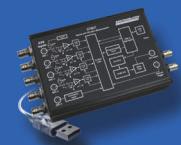
Temperature is another critical issue, Binder said, with respect to both tem-

plained that a key problem is the low thermal inertia of very small parts, and that such devices’ temperature can shift several degrees because of heat conduction through leads and test sockets. A simple heat chuck and nozzle arrangement won’t suffice to accurately control temperatures, he said, adding that Multitest’s temperature-chamber approach provides adequate soak time for multiple parts to ensure temperature stability and accuracy without compromising throughput.

Binder, who has followed many changes over his 17-year career at Austriamicrosystems, expects to see more challenges in the future—with part sizes and lead pitches shrinking further and temperature ranges increasing. But he expressed confidence that ongoing cooperative efforts among Austriamicrosystems and its customers and equipment suppliers will be able to meet those challenges head on. **T&MW**

REFERENCES

1. “Fujitsu’s Technologies Drive Future of Car Electronics,” *Journal of Electronics Industry (JEI)*, October 2007, Dempa Publications. www.fujitsu.com/downloads/MICRO/fme/automotive/JEI1007_Fujitsu.pdf.
2. Wigley, Steve, “Thinking out of the box: Expanding STC’s impact with STIX,” November 2, 2007, www.tmworld.com/guest.


Measure Foundry™ Test & Measurement Software

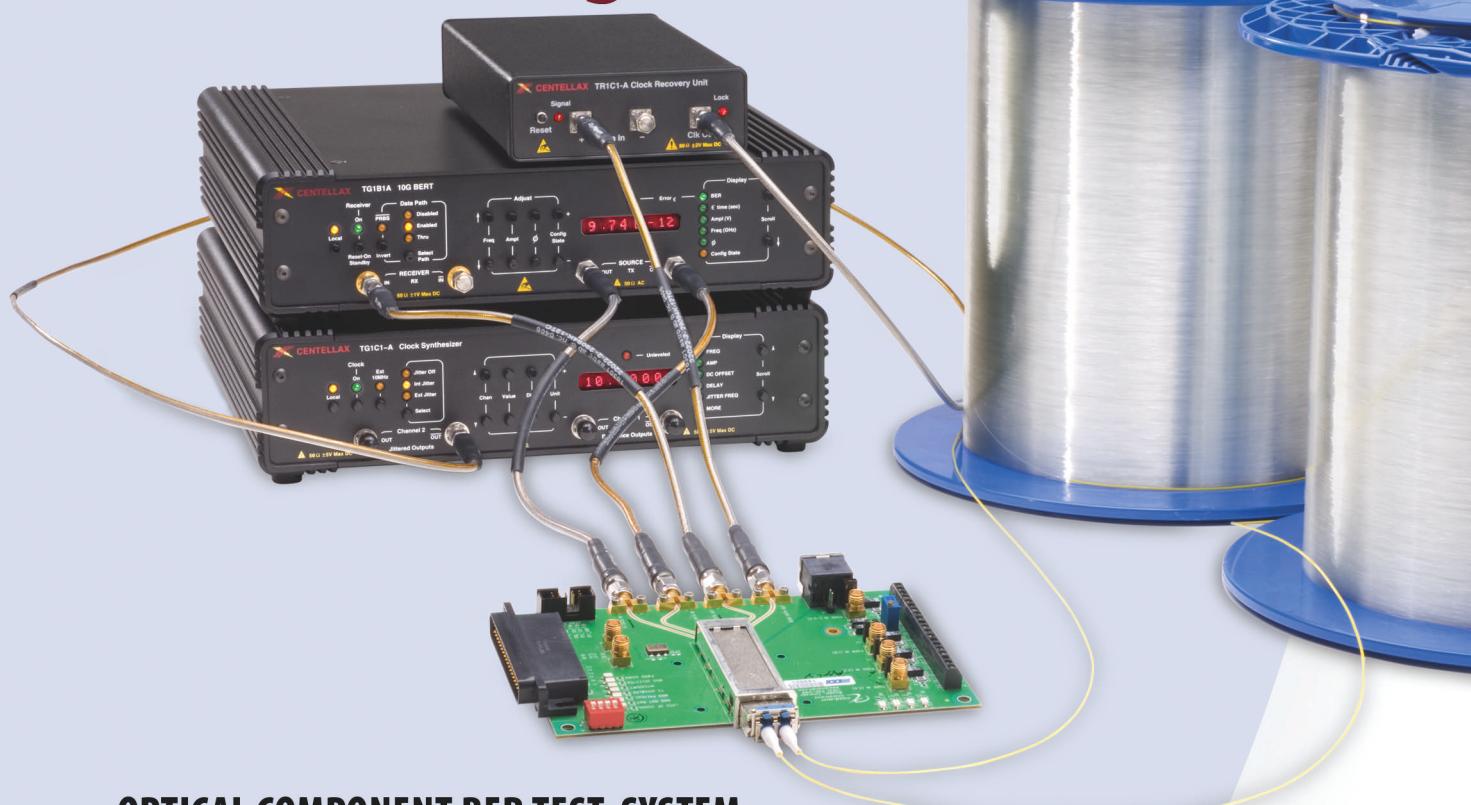
TEMPpoint™ Temperature Measurement Instrument

ECONseries Starting at \$149

DT9837 Sound & Vibration Module

DT9832 2MHz per Channel

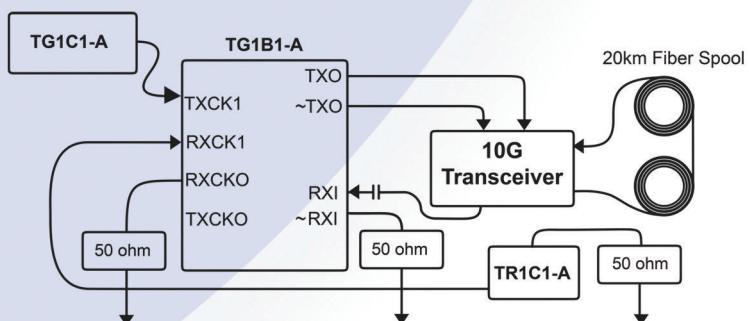
DT9841 Real-Time DSP


We offer a range of USB data acquisition modules, each supported by our patented Measure Foundry application software.

DATA TRANSLATION®

www.datatranslation.com

800-525-8528


Optical Component BER Test System

OPTICAL COMPONENT BER TEST SYSTEM

- 500Mbps to 12.5Gbps AnyRate BER test solution for physical-layer testing
- Ideal for optical components: ROSA, TOSA, XFP, SFP, lasers, diodes, etc.
- Clock Recovery Unit handles PMD and other optical dispersion
- System shown: SB10+OPTC13+OPTS13, which includes 10G BERT, 13G Clock Recovery Unit, and 13G Clock Synthesizer
- Affordable price

VISIT US AT:
OFC 2008 - Booth #1450
(Feb. 26-28, 2008 - San Diego, CA)

 CENTELLAX

451 Aviation Blvd., Suite 101, Santa Rosa, CA 95403-1069 USA
ph +1.707.568.5900 | fax +1.707.568.7647 | sales@centellax.com
toll free +1.866.522.6888 | www.centellax.com

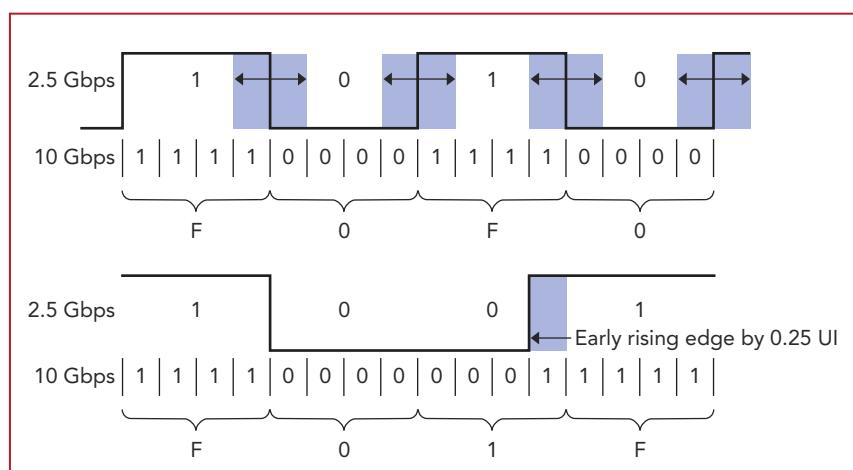
For additional details, application notes, and assembly diagrams, please visit: www.centellax.com

ACCELERATE and SIMPLIFY SERIAL DATA TESTING

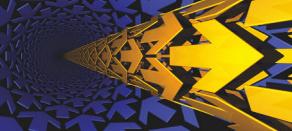
BY MARTIN ROWE, SENIOR TECHNICAL EDITOR

Serial data streams continue to increase in speed while error specifications tighten, which makes testing for jitter tolerance and bit-error rate (BER) ever more important. Several engineers have tackled the problem in different ways but with similar results—they have all cut test time and equipment costs.

David Andres, a design engineer at Marvell Semiconductor, developed a method for accelerated BER testing of serializer/deserializer (SerDes) receivers. Chung Wu, product definer at Maxim Integrated Products, uses eye templates to define SerDes receiver performance, and Christopher J. Loberg, senior market development manager at Tektronix, uses a waveform generator to create test signals. (You can download papers describing Wu's and Loberg's setups from the online version of this article at www.tmworld.com/2008_02.)


Andres has spent several years evaluating SerDes receivers. During that time, he has developed a technique that lets him cut receiver test time from hours to minutes when testing dozens of devices. He has also found ways to simplify test setups and cut costs when building additional evaluation systems for other Marvell engineers.

Although some customers have requested that Andres test for BER down


to 10^{-18} (less than one error for every 10^{18} bits), most customers require BER verification for every 10^{12} bits. At those error ratios, a full BER test at 2.5 Gbps can take 6 min, 40 s. To attain a 99% confidence level that a bit error wouldn't occur, Andres would need to run a BER test at least 100 times per device for a total test time of more than 11 hrs.

Because Andres typically tests as many as 50 individual devices—for new designs, designs that have changed, or designs that need spot checking—he needed to shorten the test

Engineers show how to improve jitter and BER testing for SerDes devices.

FIGURE 1. Four consecutive bits of the same polarity produce a data stream at 1/4 of the highest bit rate (top trace). Changing the timing of an edge changes jitter in 0.25 UI increments, producing early or late edges (bottom trace).

time. By setting up a test that increases the probability that a bit error will occur, Andres can reduce test time to a few seconds per device. This accelerated testing gives him enough confidence that the device under test (DUT) will achieve acceptable BER performance.

Adding timing variation

To accelerate his testing, Andres adds a controlled amount of timing variation (jitter) to a data stream so the jitter overlaps with an eye-mask specification. In one application, he produces four edges inside the eye mask for every 127 bits using a 7-bit pseudorandom bit sequence (PRBS7). The added jitter produces enough timing violations to predict a receiver's performance. He also uses PRBS23, PRBS31, and other bit patterns.

Andres combines two techniques to add controlled jitter to serial data streams: oversampling and mixing. Oversampling involves using a pattern generator that is four times faster than the bit rate of interest. He uses a 10-Gbps pattern generator to build a 2.5-Gbps PCI Express (PCIe) Generation 1 data stream.

To make a stable 2.5-Gbps data stream from a 10-Gbps signal, Andres uses four consecutive 1's (or a single F in hex) to make a single 1 bit at 2.5 Gbps. A 0 bit at 2.5 Gbps is made of four consecutive 0 bits at 10 Gbps. He then shifts the edge timing to create jitter.

"With a 10-Gbps pattern, I can change the timing of any rising or fall-

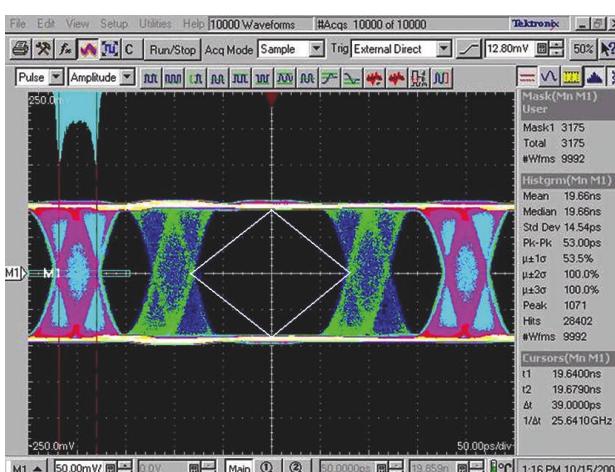
ing edge by 0.25 unit intervals [UIs]," said Andres. "Using both edges, I can add 0.5 UI of jitter to a signal. I can change the location of the worse-case jitter in the pattern. I can check many different locations and then provide feedback to the designers where the weak points in a pattern occur. A DUT can handle more jitter in one direction than in the other."

Figure 1 shows how Andres does it. The upper trace shows four bits (1010) at 2.5 Gbps with no jitter added (no edges shifted). At 10 Gbps, the pattern is

patterns, Andres can create jitter in the 2.5 Gbps stream.

Listing 1 shows code that Andres uses to develop a PRBS7 pattern. The four underlined digits in Pattern Data Line0002 represent bits that are shortened or lengthened by 0.25 UI. For example, the "8" represents a late falling edge of the preceding bit and the "E" represents an early falling edge of the following bit.

The oversampling process doesn't provide enough jitter for Andres to reach the 0.65 UI of jitter required for testing the PCIe receiver. **Figure 2** shows that when bit edges intrude on the eye mask (diamond), bit errors will occur. Andres uses mixing to add sinusoidal jitter (S_j) to cover the rest. In fact, he can produce enough timing variation to completely close the eye.


The cursors that mark the width of a closed eye in **Figure 2** correspond to 39-ps time between bit edges and indicate eye closure. A histogram above the waveform indicates the distribution of the edge timing. The range of jitter covers about 53 ps, with the remaining 14 ps of jitter coming from data-dependent

jitter (DD_j) and random jitter (R_j). "I don't like random jitter because it's so difficult to quantify and debug," said Andres. "Random jitter grows the longer you make measurements."

Figure 3 shows the current iteration of a test system that Andres uses to evaluate SerDes receivers. The DUT resides on an evaluation board. An RF signal generator produces a 10-GHz signal that becomes the system clock. A waveform generator supplies the frequency-modulation (FM) signal that represents S_j . An RF delay line modulates the 10-GHz signal with the S_j signal.

The pattern generator's output, which contains the jittered data stream, feeds the DUT. A clock output triggers a sampling oscilloscope to capture the waveforms and produce eye diagrams. An error detector counts bit errors from the receiver DUT's output.

Andres uses his technique to evaluate receivers for timing variations. He delib-

FIGURE 2. Adding jitter to a data stream can force it into the limits at the corners of an eye mask. Courtesy of Marvell Semiconductor.

represented by F0F0 hex. The lower trace is a series of four bits (1,0,0,1) at 2.5 Gbps, but the rising edge between the 0 bit and the following 1 bit occurs 0.25 UI early.

Andres accomplishes that by using 1 hex (0001 binary) at 10 Gbps instead of 0000 binary followed by F hex (1111 binary). By repeatedly changing the bit

```
[Bert Pattern File]
Pattern File Name = "PRBS07x4+ 250mUI.BPF"
Pattern Label = "PRBS07x4"
Number of Bits = 508
Number of Ones = 252
Number of Zeros = 256
Pattern Data Line0001 = "0000 000F FFFF FOFF FFF0 OFFF
FOFO FFF0 OOOF FOFF FOFO OOFF OOFF 0000 OFOF"
Pattern Data Line0002 = "FFF0 OOFF FOFF OOFF OFOO FOFO
OFOO OOFO OFFF OOF8 FFOE 0002 001F FOOF FOFO FOFO"
```

LISTING 1. Using this code, David Andres of Marvell Semiconductor develops a PRBS7 pattern.

erately introduces as little amplitude variation as possible because amplitude variation will also affect receiver performance.

Reducing the amount of test equipment

Andres started with more test equipment than he now uses, but he found ways to simplify the test setup each time he needed to create a new system. "When I started working here, I was the only one who needed a 12-Gbps BER tester," said Andres. "Now, there are 12 to 15 engineers who use them. At \$150,000 each, that's a lot of money, so I look for ways to reduce the amount of test equipment we use in each setup."

Andres uses a delay line that lets him reduce the cost of a system because he can use an RF signal source that lacks an FM modulator. A delay line typically costs a few hundred dollars, but an FM modulator adds about \$10,000 to an RF

signal source. He also said that he can modulate an RF signal with sine waves up to 80 MHz with a delay line as opposed to 20 MHz with an FM modulator. The bad side of the delay line is that the amount of delay variation is typically limited to a few hundred picoseconds, while FM can produce variation of tens of nanoseconds at lower frequencies. Thus, he will use an FM modulator when necessary.

To further reduce costs, Andres purchases used equipment whenever possible. He noted that some BER testers include an integrated delay line, so you may not need to purchase an external one.

His first test setup included an FR-4 stripline between the pattern generator's output and the DUT. That adds loss to the signal. Andres eliminated the stripline in later test setups because bit errors caused by backplane loss are difficult to debug. In addition, Andres said

ON THE WEB

 To learn more about the test methods that Chung Wu and Chris Loberg use, you can download their papers from the online version of this article.

If you have a different test method for performing jitter and BER testing, we'd like to hear about it. Contact senior technical editor Martin Rowe at mrowe@tmworld.com or post a comment to the online version of this article.

www.tmworld.com/2008_02

that you need a different stripline for each data rate, which reduces the flexibility of a test setup and adds to the cost. He also eliminated a real-time oscilloscope but will use it when he needs to debug a design.

Using eye-pattern templates

Chung Wu of Maxim Integrated Products also evaluates SerDes receivers for jitter performance. In a paper entitled "Eye-pattern templates help evaluate serializer/deserializer performance," Wu describes how he measures bit errors versus timing variations (jitter) and amplitude. The paper provides test results—in tabular and eye-diagram form—that show how temperature and cable length affect the amount of jitter that a receiver will tolerate before producing bit errors.

To evaluate a receiver for jitter, Wu's test system generates a controlled sinusoidal jitter. The synthesizer sweeper (an RF signal source) FM modulates its RF signal by the sinusoidal output of the waveform generator. Wu adjusts the amplitude of the signal at the receiver.

Wu's paper explains the process he follows: "When signal swings are larger than an observed threshold, the deserializer performance is determined mainly by jitter. We then perform a series of tests on a 5-m cable at a serial-data rate of 660 Mbps, and determine the maximum jitter the deserializer can tolerate for each given level of signal amplitude."

Wu sets the amplitude to 100 mV_{p-p} at 25°C but needs 200 mV_{p-p} for devices at 95°C. He then varies the jitter to find

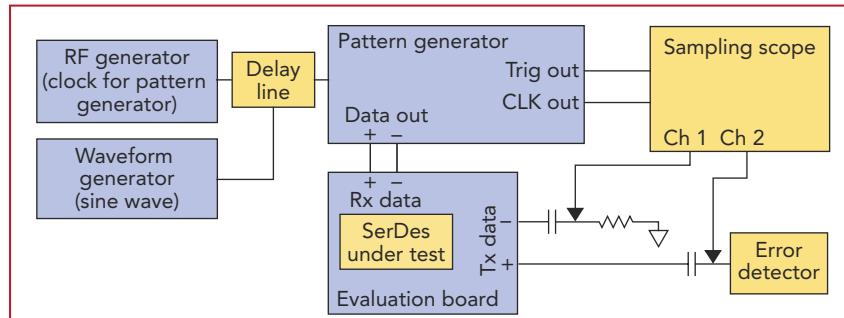


FIGURE 3. David Andres of Marvell Semiconductor uses this test setup to test SerDes receivers for BER in the presence of jitter.

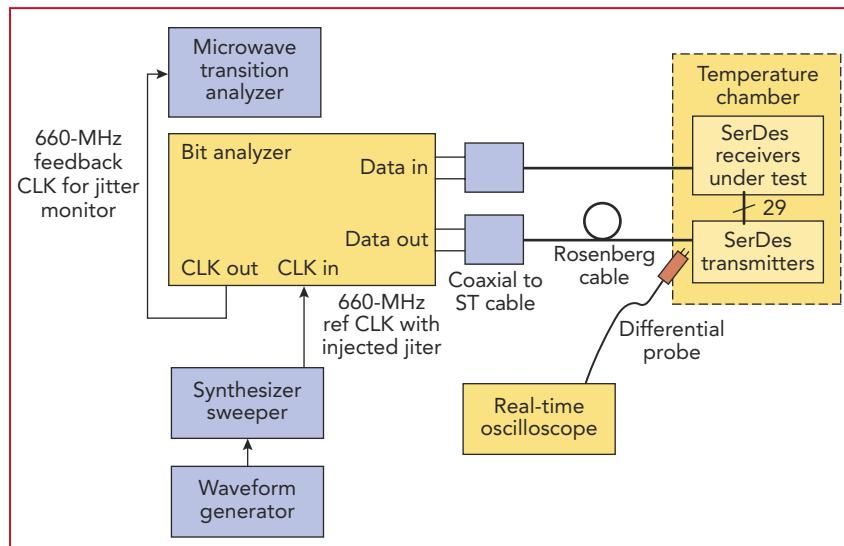
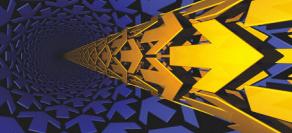



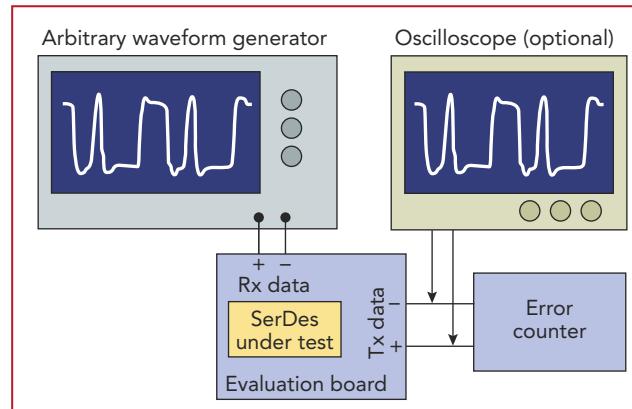
FIGURE 4. A test setup used by Chung Wu of Maxim Integrated products uses a synthesizer sweeper that generates a modulated clock signal for a bit analyzer.

the greatest amount that produces no errors for 2 min.

The test setup in **Figure 4** shows that Wu uses a system similar to Andres, but all injected jitter is sinusoidal. The RF synthesizer generates a clock signal, and the waveform generator produces the modulation sinusoid signal. A microwave analyzer measures the output clock from a bit analyzer and controls the waveform generator. Wu's test setup uses more test equipment than Andres' setup (Figure 3) because Wu performs temperature testing and varies signal amplitude.

Creating test signals with AWGs

Chris Loberg of Tektronix suggests that you can simplify serial tests by using an arbitrary waveform generator (AWG) to generate signals for


tests of serial receivers. Loberg argues that a direct-synthesis AWG (with a sufficient sample rate) can replace the noise generator, sine wave generator, and pattern generator used in traditional test setups.

Loberg's paper, "Direct approach to signal generation promises simpler com-

pliance measurements for serial receivers," explains how to use an AWG to create the entire test signal—jitter and all. Loberg acknowledges that serial devices expect to see digital waveforms, but he says that the sample points in an AWG's memory "can define essentially any wave shape, including digital pulses."

Figure 5 shows the test setup that can perform a Serial ATA compliance test. The oscilloscope is optional, but useful for troubleshooting.

These three applications demonstrate how you can accelerate BER tests, use eye masks to predict SerDes receiver performance, and simplify your test setup. Unless you are required by a standard to perform a test in a particular way, you have the freedom to improvise. **T&MW**

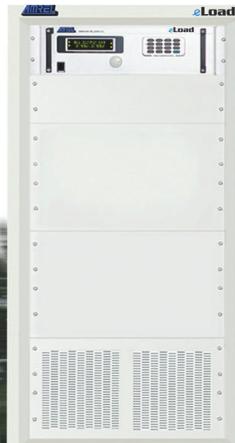


FIGURE 5. Chris Loberg of Tektronix has found that an arbitrary waveform generator can reproduce a digital bit stream and add analog signal characteristics.

PROGRAMMABLE ELECTRONIC LOADS

Tailored to Our Customer's Stand Alone & System Application Needs

www.amrel.com

1(800) 654-9838 ariinfo@amrel.com

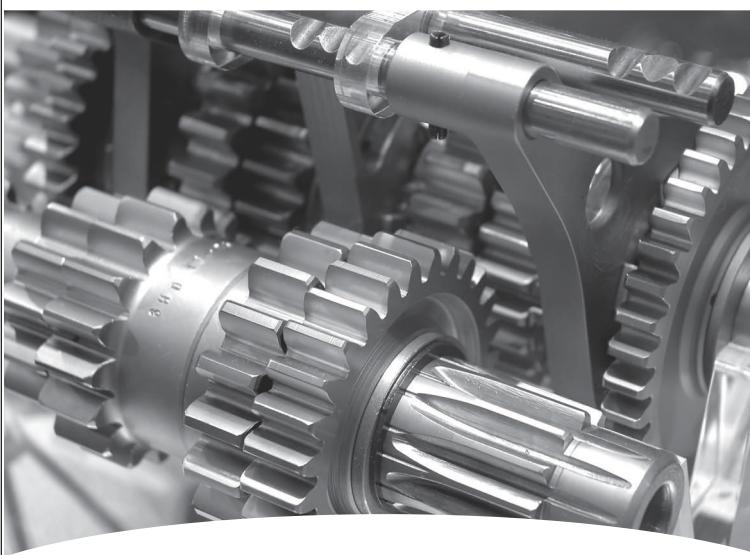
*Option for Command Syntax Compatible

PORTABLE OSCILLOSCOPE OX SERIES

**4 Channel Isolated
100MHz Oscilloscope
with 12 bit Resolution!**

**Oscilloscope ~ Multimeter
Harmonic Analyzer
FFT Analyzer ~ Recorder**

- Four isolated inputs to 600V_{AC}, 850V_{DC}
- 100MHz, 1GS/s in one-shot and 25GS/s in ETS with memory depth of 2500 counts per channel
- Built-in web browser
- Real-time FFT analysis standard and calculation function on the channels
- RS-232, Centronics & Ethernet with web server
- Plug-and-play probes and accessories



AEMC[®]
INSTRUMENTS

(800) 343-1391

www.aemc.com

new 2008 catalog

Get your NEW 2008 Honeywell Sensing and Control Test and Measurement Sensors Catalog — free.

With load cells, pressure transducers, torque sensors, instrumentation, accelerometers and displacement sensors, we're offering innovation that's well apart. So from off-the-shelf products to uniquely customized solutions, trust Honeywell.

With highly accurate, stable sensors engineered for harsh environments, worldwide delivery and customer support, and industry-leading engineers, Honeywell Sensing and Control is your full-service, globally competitive answer. **Order your free catalog today: visit <http://sensing.honeywell.com/newcatalogTM> or call 1-800-848-6564.**

Honeywell

**Part Innovation.
Part Engineering.
Total Solutions.**

AEROSPACE 08

TESTING • DESIGN • MANUFACTURING

15-17 April 2008
New Munich Trade Fair Centre
Germany

www.aerospacetesting.com

Design
Testing
Evaluation
Manufacturing
Assembly
Quality
Compliance

Registration
Now Open

THE WORLD'S LEADING EXHIBITION AND EDUCATIONAL PLATFORM FOR AEROSPACE TESTING, DESIGN AND MANUFACTURING

15–17 April 2008, New Munich
Trade Fair Centre, Germany

Join industry professionals from across the world for 3 days of networking, business, expert knowledge and latest solutions in aerospace design, testing and manufacturing.

- 60+ free to attend technical seminars
- Specialist workshops
- Live demonstrations
- Technical tours to key regional aerospace facilities
- 300+ expected exhibitors

REGISTER FREE NOW:
www.aerospacetesting.com

ORGANISED BY

 Reed Exhibitions
Aerospace & Aviation Group

OFFICIAL MEDIA PARTNERS

AEROSPACE
MANUFACTURING

AEROSPACE
TESTING
INTERNATIONAL
MAGAZINE

 Flight
www.flightglobal.com

SUPPORTED BY

 bavAIRia
Europe's heart of aerospace
and navigation

 Test &
MEASUREMENT
WORLD
TMWorld.com

DFT, ATE DRIVE YIELD IMPROVEMENT

Automated test equipment is becoming a yield-metrology tool that works in conjunction with yield-analysis software.

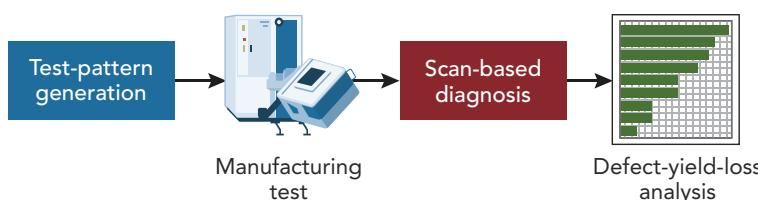
BY AJAY KHOCHE, VERIGY, AND WU YANG, MENTOR GRAPHICS

As advances in IC technology have resulted in geometry and process variations, manufacturers have encountered a drop in both initial and mature yield and an increase in yield ramp-up time. Systematic design-process interactions are now the dominant yield-loss mechanisms, and their effect is exaggerated by design complexity. Manufacturers can address the new yield-loss mechanisms by using a combination of automatic test equipment (ATE) and design-for-test (DFT) software to capture and analyze defects during high-volume production and reduce process problems on the manufacturing line.

The new role of production testing

The use of scan-based test structures has become prevalent in DFT applications. In addition to using at-speed test to check for stuck-at faults, manufacturers can use the technique to find timing-related defects in nanometer technologies. Also, newer fault models such as bridge (Ref. 1), N-detection (Ref. 2), false-multicycle (Ref. 3), and small-delay-defect (Ref. 4) along with new pattern-generation tools make it possible for manufacturers to detect defects in sub-90-nm designs.

The increased challenges of yield management at the submicron level have resulted in a new role for ATE. Previ-


ously, ATE was limited to applying tests to perform a simple quality screen, and testers collected only pass/fail statistics. Now, manufacturers are finding that newer, flexible ATE systems can collect failure data on the scan cell nodes inside a chip (Figure 1) and provide that data to diagnosis tools, which in turn can perform defect analysis that leads to process and design improvements (Figure 2). Essentially, the ATE becomes a yield-metrology tool as well as a quality-screen tool.

Defect diagnosis roughly consists of two phases. In the first, engineers must analyze a sufficient number of failed die to identify a failure trend. In the second, they must select a group of die that may represent the failure trend and perform further analysis, which may include refined diagnosis and linking to physical layout data followed by physical failure analysis. The goal is to find the defect location, identify the failure mechanism, and characterize the failure behavior.

Failure diagnosis data requirements

An ATE system that will be used in a failure-diagnosis and yield-improvement process must collect the following sub-die-level data:

- *Voltage and current measurements.* These traditional measurements remain important and need to be correlated

FIGURE 1. Volume test data collected during manufacturing can help support failure diagnosis.

with other sub-die-level measurements during statistical analysis.

- *Digital test results from (compressed) scan/BIST test patterns.* The logic-diagnosis software needs to know the exact position of a fail bit from the scan chain in order to identify the root cause.

- *Memory test results from built-in self-test or built-in self-repair (BIST/BISR).* Information from BIST/BISR is required for monitoring silicon processes and optimizing redundancy schemes.

The fact that the above data needs to be collected during high-volume manufacturing test puts additional demands on the ATE's performance. In particular, the following conditions must be satisfied by the ATE to make volume diagnosis viable:

- *Low test-time impact.* The data collection time for volume diagnosis typically must be less than 5% of the device test time.

- *Low data volume.* The data volume typically must be kept to about 5 kbytes

per device without compromising diagnosis capability, leading to the need for intelligent data collection.

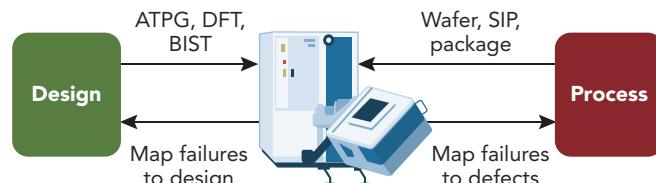
- *Efficient data flow.* The system should be able to support the diagnosis of more than 100,000 faulty devices per day.

of a defect. These steps include regenerating scan patterns based on diagnosis results, re-testing, and re-running diagnosis routines. Once you locate a physical defect, you can use traditional physical failure-analysis methods to analyze it more fully.

Combining hardware and software

To help customers with their defect-diagnosis and process-improvement programs, our companies integrated the Verigy V93000 SOC (system-on-chip) tester with the Mentor Graphics YieldAssist software tools.

Although you could use products from various companies to set up a yield-improvement system, we will explain how such a system can work by describing our setup.


To begin, the ATE system feeds links to information on netlist and test patterns—along with the test results from devices that have failed in production—into the diagnosis software. The software performs some consistency checks on the data to help ensure accuracy and then performs a series of statistical-analysis steps to identify a failure signature and provide for symptom separation, suspect type classification, suspect scoring and ranking, and net, cell, and pin location.

The results are fed into a test debug and logic-visualization tool that identifies the logical location of the failure and into a physical-verification tool that provides a hierarchical visualization of the device's physical design. By correlating the logical type and location of the failure to the physical location of the failure, the engineer can rapidly determine if the failure is due to a layout “hot spot,” such as interconnects subject to bridging or pinching.

Because scan testing is based on the direct stimulation and response of the actual internal logic (vs. external functional testing), it provides the best information for pinpointing the cause of systematic and random yield loss resulting from manufacturing process variability.

When choosing scan test and diagnosis technology, engineers should look for these capabilities:

- a smooth fit into the yield-improvement flow via flexible interfaces and controls;

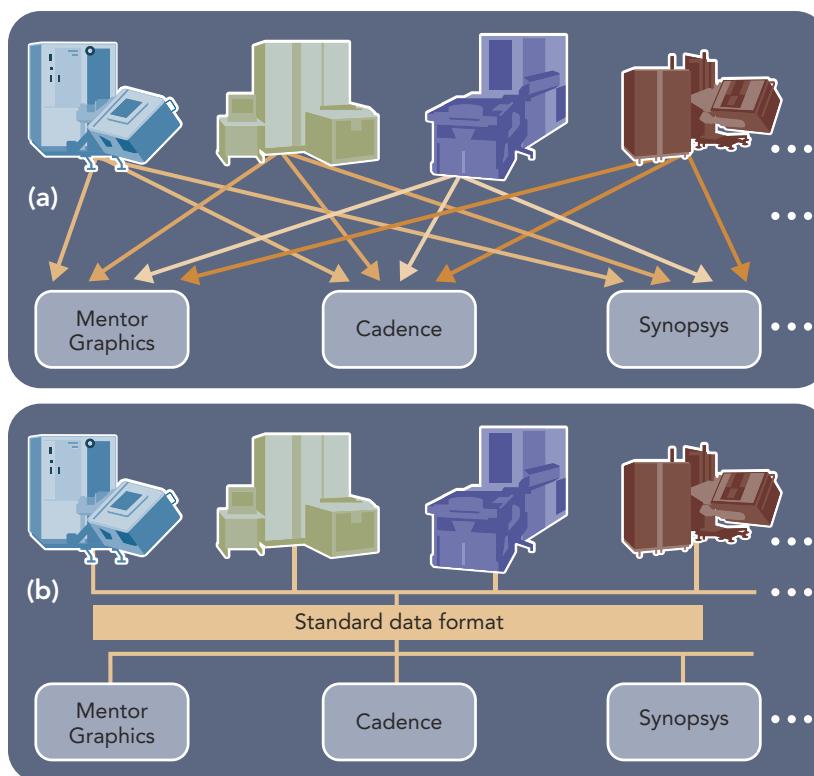
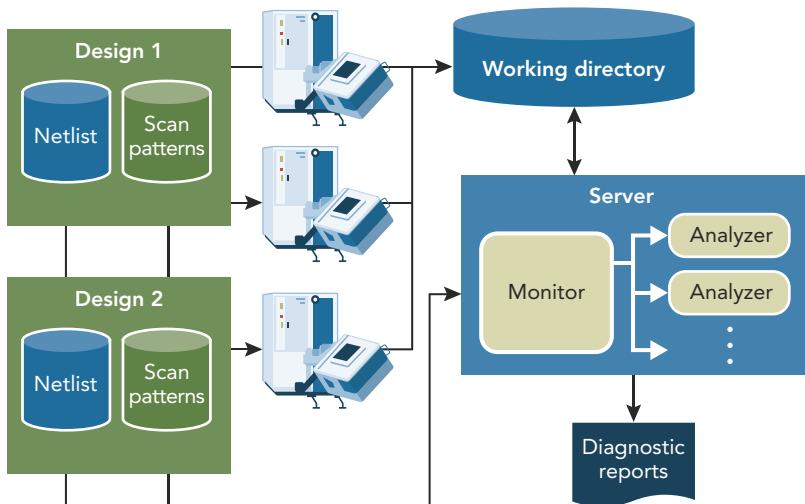


FIGURE 2. ATE acquires a diagnostic role when combined with yield-analysis software.

Diagnosis software requirements


Scan diagnosis is a viable approach for identifying the cause of physical defects. By correlating logic simulation information, physical layout data, and test results from defective devices, diagnosis software can identify a failure site quickly.

After the software determines the first-level correlations, you can take additional steps to isolate the location

FIGURE 3. (a) Typical ATE-to-EDA datalog flows involve custom data formats on a per-tester and per-tool basis. (b) An improved flow employs a standard format.

- capabilities for scan-chain (Ref. 5), logic, and memory diagnosis;
- the ability to handle large volumes of test data and automation of the analysis process;
- support for suspect classification, score, ranking, net name, and pin identification;
- links to physical-verification and design-for-manufacturing (DFM) tools;
- support for a variety of failure file formats to accommodate production testing systems; and
- direct diagnosis from both compressed (Ref. 6) and uncompressed test results.

FIGURE 4. The scan-diagnosis automation mode supports multiple designs and multiple testers.

The increasing volume of test patterns required to perform high-quality testing on sub-90-nm ICs has led to widespread adoption of test-pattern compression. Scan test-pattern compression allows high-quality tests to be run while maintaining costs and time to test (Ref. 7). In the context of failure diagnosis, an important issue is whether the compressed patterns can be used for diagnosis without losing important information.

ATE requirements

To support the volume diagnosis environment shown in Figure 2, the ATE system must be accurate enough to exhibit low or no self-induced yield loss. In addition, it must support multiple DFT architectures so it can collect the sub-die-level fail information from scan-chain testing, and it should permit selective capture of relevant information from the test process so the available

memory can be used efficiently. Because test is a cost- and time-sensitive operation, the ATE must collect and transfer failure data with minimal impact on throughput. The ATE must address data capture in single- and multiple-device test environments:

- *Fail data capture for a single device.* This can be measured as fails captured per second. An efficient ATE system will have zero or close-to-zero overhead for the information collection.
- *Fail data capture in multisite flows.* Multisite testing presents a challenge as well as

- perform data-integrity checks at regular intervals so the downstream analysis tools can ascertain that the data has not changed since the last synchronization point, and

- support standard data formats for multi-tool, multivendor environments.

This last point is important for customers with ATE from multiple vendors on the test floor. Supporting custom formats on a per-ATE and per-tool basis is a tedious process that is prone to errors. **Figure 3a** shows the complexity of transformations. Ideally, all the ATE and analysis tools should use a standard format, as shown in **Figure 3b**, for greater efficiency and accuracy.

Automating volume diagnosis

Figure 1 shows a volume diagnosis flow for a single design using a single tester. In reality, a single design may have to be tested using multiple testers, and different designs may get tested on one test floor. **Figure 4** shows an automated volume scan-diagnosis flow that our companies devised for such a test environment. A diagnosis server session called “monitor” captures failure data from multiple testers assigned to different devices, each with its own working directory. If there are existing failure files in a working directory, the server automatically checks data consistency on the new data.

Once data passes the consistency check, the monitor process distributes work to analyzer processes that perform fault diagnosis. Multiple analyzer processes can be assigned to a device data stream. Each analyzer corresponds to one diagnosis engine. If all failure files have been diagnosed, the server remains in an idle state waiting for new failure files. The results of analysis can be output in standard scan-diagnosis report format, in CSV tables, or potentially in other database formats. The results can be encoded or non-encoded.

Accurate diagnosis depends on input-data-consistency checks, a full simulation of passing and failing patterns, a complete test failure log, and access to physical design (layout) data. Experiments performed with the Mentor software found that compressed pattern diagnosis performs almost as well when compared to diagnosis with uncompressed patterns (Ref. 8). Comparisons of results from compressed and uncompressed patterns

show a correlation of 92%, demonstrating the feasibility of a diagnosis flow based on production testing using compressed test patterns.

Advances in technology are demanding a new approach to yield learning using volume diagnosis. Therefore, while various test methods and compression

technology are necessary to maintain high-quality and meet low-cost test needs, it is also critical to be able to identify defects quickly and reduce the yield ramp-up process to diagnose a significant volume of failed devices.

The role of ATE is expanding to meet these new requirements of yield im-

provement, thus closing the loop between DFT and diagnosis. Yield-friendly scan diagnosis can handle large data volumes automatically and efficiently. In addition to pinpointing the location of defects, scan diagnosis provides a learn-failure mechanism through logic simulation and enables physical-layout analysis based on failure data. This will greatly facilitate failure analysis and reduce the yield-learning effort. T&MW

REFERENCES

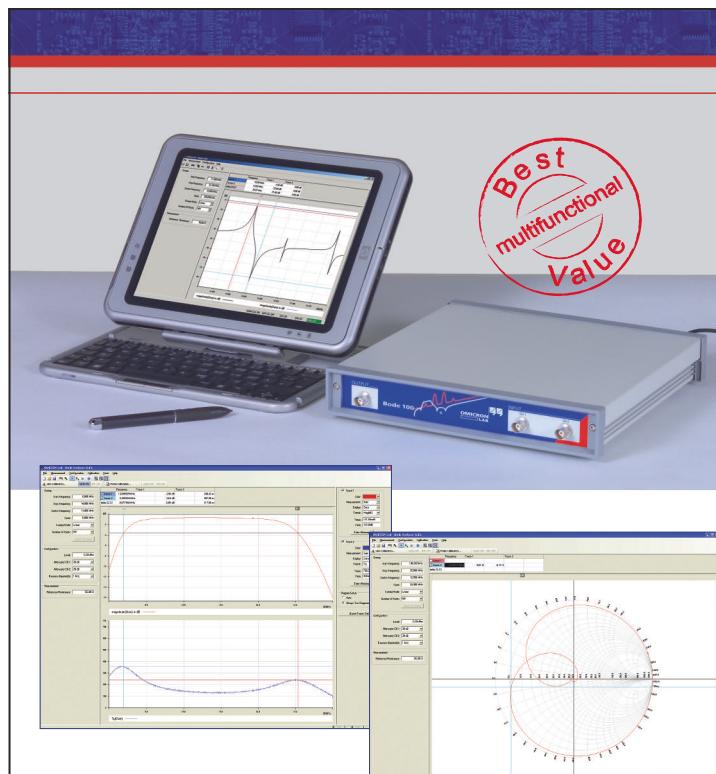
1. Gu, Xinli, et al., "Realizing high test quality goals with smart test resource usage," International Test Conference 2004.
2. Benware, B, et al., "Impact of multiple-detect test patterns on product quality," International Test Conference 2003.
3. Higuchi, H., et al., "Enhancing the performance of multi-cycle path analysis in an industrial setting," Asia and South Pacific Design Automation Conference 2004.
4. Lin, Xijiang, et al., "Timing-Aware ATPG for High Quality At-speed Testing of Small Delay Defects," Asian Test Symposium 2006.
5. Cheng, Wu-Tung, et al., "Compactor independent direct diagnosis," Asian Test Symposium 2004.
6. Huang, Y., et al., "Compressed pattern diagnosis for scan chain failures," International Test Conference 2005.
7. Rajski, J., et al., "X-Press Compactor for 1000x Reduction of Test Data," International Test Conference 2006.
8. Leininger, A., et al., "Compression mode diagnosis enables high volume monitoring diagnosis flow," International Test Conference 2005.

Dr. Ajay Khoche is a lead consultant for advanced test methodologies and manager of EDA/DFT alliances at Verigy. Prior to Verigy, he was senior scientist at Agilent Labs and a project lead at Synopsys. Khoche holds a PhD in computer science and has been active in the field of test for over 15 years. He has been on the program committees for several conferences and workshops and currently chairs the STDF fail datalog standardization group. He is recipient of the Best Panel award at VLSI Test Symposium 2005. He has authored several refereed papers and holds many US patents. ajay.khoche@verigy.com.

Wu Yang is a technical marketing engineer in the design-for-test group of Mentor Graphics. His areas of specialty includes design-for-test, chip testing, and scan diagnosis. He has a master's degree in electrical engineering from Portland State University. wu.yang@mentor.com.

Winchester Electronics

62 Barnes Industrial Road North
Wallingford, CT 06492
Phone: 203-741-5400
Fax: 203-741-5500
www.winchesterelectronics.com


Navatek Eng. Corp. • 22582 Avenida Empresa • Rancho Santa Margarita, CA 92688 • Tel: (949) 888-2222 • Fax: (949) 635-3141

USB or PXI Based JTAG/BDM Test Systems

- USB or PXI single slot, 3U format
- Troubleshooting of processor based boards via JTAG or BDM debug port
- Boundary scan test, view and control JTAG pins in real time
- Run SVF files for programming FPGA/CPLD devices
- On Board Flash ROM programming
- 16 channels of general purpose digital I/O
- High speed logic probe for nodal diagnostics
- Supports PXI triggering

Applications

- Automated Test Equipment (ATE)
- Service and Repair
- Engineering Evaluation

OMICRON
LAB

Bode 100

Model 1000

All in one

- Gain Phase Meter
- Vector Network Analyzer
- Impedance Meter
- Sine Wave Generator

Wide frequency range: 1 Hz - 40 MHz

High accuracy of results

Easy data processing & data sharing

Portable - compact lid

Automation Interface

Vector Network Analysis down to 1 Hertz!

US\$ 5,490.-
(PC not included)

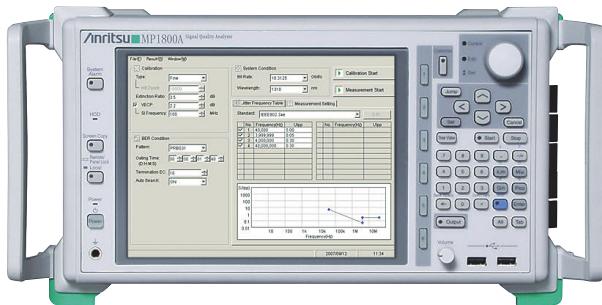
Check www.omicron-lab.com for details.

Stumped on a big project? Don't **SWEAT** it!

**Everything about Standard Wafer-Level
Electromigration Accelerated Test
and more can be found at TMWorld.com.**

**TMWorld.com now offers more SWEAT than ever.
We've redesigned the website to provide:**

- + More News, More Often** – from TMWorld.com and around the web
- + Blogs** – T&MW editors and industry leaders lend color to manufacturing's hot button issues
- + TalkBack** – Sound off about the latest news and blogs
- + Improved Search** – Dig through TMWorld.com archives and find relevant information from other news sources
- + Online Glossary** – Learn about SWEAT, SPICE, shmoo plot and more


**Test &
MEASUREMENT
WORLD.**

TMWorld.com

Visit the **new** TMWorld.com.

The industry's best source for test, measurement,
and inspection information.

PRODUCT UPDATE

Analyze optical receivers

Anritsu's MP1800A signal-quality analyzer combines hardware and software to perform stressed-eye tests on optical receivers. The measurement suite consists of an MP1800A analyzer configured with a built-in synthesizer, a pulse pattern generator, and an error detector combined with stressed-eye measurement control software, a stressed-eye transmitter, and an optical receiver.

The transmitter supports 1310- and 1550-nm wavelengths, and the control software supports power-penalty tests, jitter-tolerance margin measurements, and jitter sweeps for jitter tolerance go/no-go tests for signals from 100 Mbps to 12.5 Gbps. You can make optical modulation amplitude (OMA), extinction ratio, and vertical eye closure penalty (VECP) measurements with a ± 0.3 -dB power penalty.

Base price: \$46,500. Anritsu, www.us.anritsu.com.

USB-controlled true RMS RF power meter

The 6-GHz NI USB-5680 true-RMS power meter features high measurement accuracy and wide dynamic range packaged in a size similar to a typical power head. In automated test applications, the small size frees up rack space without sacrificing performance. Powered solely from the USB cable, the new power meter consumes only 100 mA of current.

Traditional power meters feature a power sensor or head located close to the unit under test and connect via cable to an accurate analog-to-digital converter (ADC) located in conventional instrumentation hous-

ing. In contrast, the USB-5680 combines both the sensor and the ADC in one package occupying less than 9.6 in³. The USB-5680 connects directly to an available USB port on any PC or PXI controller. Features include an 8.5x3.0x5.6-cm size, a 50-MHz to 6-GHz frequency range, a 63-dB dynamic range, and a ± 0.18 -dB amplitude accuracy.

The USB-5680 comes with a full-featured, executable soft front panel and easy-to-use software libraries to help engineers set up their systems. Engineers who need to measure continuous wave RF signals up to 6 GHz can use the USB-5680 in a stand-alone configuration with a VXIplug&play-compatible executable soft front panel to facilitate interactive control. To incorporate the USB-5680 in an automated test and measurement system, engineers can use the application programming interface (API) with their programming environments of choice, including NI LabView and LabWindows/CVI and the Microsoft .NET environment.

Base price: \$2499. National Instruments, www.ni.com.

Handheld vibration spectrum analyzer uses Windows Mobile

The VSA-1225 vibration spectrum analyzer (VSA), which works with the Windows Mobile/Pocket PC platform, joins Datastick's line of Palm-based VSAs in enabling companies to use portable vibration analysis in machine-condition monitoring, predictive maintenance, and routine troubleshooting. The VSA-1225 consists of Datastick hardware and software, plus the Hewlett-Packard iPAQ handheld computer, and one or more sensors.

The VSA-1225 hardware module attaches to an HP iPAQ hx2400-series or hx2700-series handheld. The iPAQ supplies the computing power and 128 Mbytes of data storage, while the Datastick VSA hardware module supplies the sensor power, Datastick electronics, and interface. SD (Secure Digital) memory cards (up to 2 Gbytes each) provide auxiliary storage.

For the handheld computer, the Datastick Spectrum software suite includes Datastick Spectrum and Datastick Review software. New Version 1.8 of Datastick Spectrum software records and shows vibration fast

Fourier transform (FFT) spectra in acceleration, velocity, and displacement displays, as well as in a new vibration decibel display. In addition, Spectrum provides time-domain acceleration waveforms and records and displays overall vibration with color-coded ISO (or custom) alert levels.

Datastick, www.datastick.com.

Oscilloscopes trigger with record memory

With an optional 1 Gsample of waveform memory per channel, Agilent's Infiniium DSO/DSA 90000A series holds the current memory record for oscilloscopes. The 90000A series consists of six digital signal

oscilloscope (DSO) and six digital signal analyzer (DSA) models, with 10 Msamples of memory standard on the DSOs and 20 Msamples on the DSAs. Several memory options of up to 1 Gsample per channel are available.

The 90000A series builds on the low-noise 80000B series, but adds triggers such as edge-then-edge, timeout, and window. With a window trigger, you can draw a box on the screen and set the oscilloscope to trigger whenever a signal enters that space.

Besides having deep memory, the 90000A series features high bandwidth, ranging from 2.5 GHz to 13 GHz. The 2.5-GHz, 4-GHz, and

AC Power Sources

High-Performance at a Low Price

- Switching Power Technology
- Direct Coupled Output
- Intuitive User Interface
- Stock Delivery
- Manual and Programmable Models

MANUAL
MODELS
STARTING AT
\$1,995⁰⁰

PROGRAMMABLE
MODELS
STARTING AT
\$2,595⁰⁰

• 500 VA • 1 KVA • 2 KVA • 4 KVA MODELS

apt Associated
Power Technologies™

Visit our website to request a product demo.

Toll Free: 1-877-322-7693
www.aspowertechnologies.com

6-GHz models sample at 20 Gsamples/s on all channels, while the 8-GHz, 12-GHz, and 13-GHz models sample at 40 Gsamples/s. All models except the 13-GHz unit are bandwidth upgradeable. Noise levels range from 147- μ V RMS at 2.5 GHz to 389- μ V RMS at 13 GHz. All models feature 29 application-specific measurements covering serial data streams such as PCI Express and Ethernet, plus jitter analysis and mask testing.

Base price range (for DSOs): \$29,000–\$102,000. Agilent Technologies, www.agilent.com.

PXI and USB modules support MOST bus

Goepel electronic has introduced MOST (Media Oriented Systems Transport) communication modules for electronic control units (ECUs) in PXI and USB form factors. The new modules include the PXI card 3060 and a USB stand-alone controller named basicMOST 3060.

PXI 3060 and basicMOST 3060 target applications such as test of vehicle control units. The modules

are configurable as master and slave. The new controllers guarantee sending/receiving functions on the MOST bus Control Channel and Packet Channel, and they can read out all MOST bus data.

Furthermore, the controllers can send and receive application protocols, data packages, and control messages. Trigger inputs and outputs are provided by means of the front connector. In addition, the PXI 3060 and basicMOS 3060 have analog inputs and outputs.

Goepel electronic, www.goepel.com.

BV Systems puts together WiMAX analysis bundle

Berkeley Varitronics Systems now offers a complete 700-MHz WiMAX propagation analysis package consisting of its Gator Class A transmitter, Coyote modular receiver system, and Forecaster GPS mapping coverage software. The bundle is available in configurations for 700-MHz, 2.5-GHz, and 3.5-GHz bands.

Forecaster allows Coyote users to plot and view coverage of wireless networks in tabular or graphical windows and also gives them the ability to create HTML reports of base stations and antennae coverage and RF overlap reports. It combines real-time Coyote measurements, GPS geocoding accuracy, and PC analysis.

Berkeley Varitronics Systems, www.bvsystems.com

ZTEC introduces LAN-based oscilloscopes

The new ZT4610 oscilloscopes from ZTEC Instruments are 1U height, half-rack width, rack-mountable instruments designed for ATE, aerospace and defense, and embedded applications. The oscilloscopes are available in two- and four-channel versions and offer a 1-GHz analog bandwidth, up to 4 Gsamples/s real-time sampling, and up to 64-Mpoint record lengths. An Ethernet interface enables users to remotely

control the oscilloscopes over the Internet.

Instrument drivers are available for programming environments such as LabView, LabWindows/CVI, Matlab, COM, Visual C/C++, and Visual Studio. Additionally, the company's free ZScope control and display software, which offers a soft panel that simu-

lates a bench instrument, displays acquired waveforms, math waveforms, and waveform parameter data.

ZTEC Instruments, www.ztecinstruments.com.

INTRODUCING THE ULTRA FINN™

The latest advancement in LED testing

Faster
Smaller
More Accurate

Discover the new standard in LED color
and intensity testing - Ultra FINN™

TEST COACH
CORPORATION

1-877-551-4129
www.testcoach.com

RTD thermometer has 48 dedicated ADCs

The DT9872 from Data Translation is a PC-based resistance-temperature detector (RTD) thermometer that features a dedicated analog-to-digital converter (ADC) for each channel. The unit's front panel accepts up to 48 four-wire RTD probes,

making it useful for lab and factory applications. The dedicated ADCs let you simultaneously sample all channels at up to 7.5 Hz. You can select from platinum 100 Ω (Pt100), platinum 500 Ω (Pt500), or platinum 1000 Ω (Pt1000) probes. Tempera-

ture range is -200°C to 850°C (-328°F to 1562°F).

The instrument connects to a PC through a USB or Ethernet port. PC software lets you capture and plot data without programming, and you can export data to Excel for analysis.

Price: \$7995. Data Translation, www.datatranslation.com.

Analyzer measures true OSNR in ROADM networks

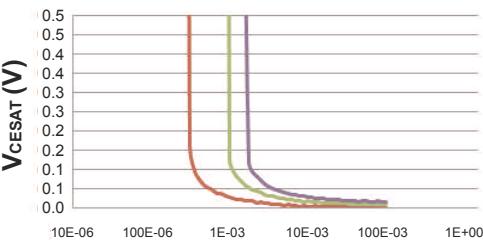
JDSU has improved the measurement analysis for the in-band optical spectrum analyzer used in its T-BERD/MTS-8000 test platform. The OSA-320 module measures the true optical signal-to-noise ratio (OSNR) in reconfigurable optical add/drop multiplexer (ROADM) networks. It employs an optical polarization splitting method for measuring OSNR inside the optical channel (in-band OSNR), providing an accurate, true measurement.

JDSU, www.jdsu.com.

Software works with EMI test receivers

Rohde & Schwarz has released the ES-SCAN Windows software for performing electromagnetic interference (EMI) tests with the company's ESPI3 and ESPI7 test receivers. The ES-SCAN software performs EMI measurements in accordance with commercial electromagnetic compliance (EMC) standards. Preconfigured test setups can set parameters (such as transducer factors for antennas) as specified by the EMC standard selected by the user. The user can also generate and store custom configurations.

EMI peak values are determined automatically with user-defined thresholds, and frequency lists created by the user allow measurements to be performed at detected (or suspected) interference frequencies.


Rohde & Schwarz, www.rohde-schwarz.com.

CURVE TRACER SERIES 5000

Need a Curve Tracer?

Under \$24,000
(Limited Time Offer)

V_{CESAT} VS. I_B

- Wide Selection of Available Curves
- Programmable Data Point Increments
- Increments may be Linear or Logarithmic
- Saved Recall
- Run up to 10 Curve Programs
- Standard Fixture Pattern

Your Discrete Test Source
Scientific Test, Inc.

1110 E. Collins Blvd., Ste 130,
Richardson, TX 75081
972.479.1300 | FAX 972.479.1301
E-Mail info@scitest.com
Website www.scitest.com

Get your facts STRAIGHT

At TMWorld.com you can. That's because we are dedicated to providing you with the best technical information we can. With a team of technical editors who are all previous engineers themselves, we have the access and background to bring you the information that matters to you most.

See for yourself—browse our current issue, the latest news, or our archives.

TMWorld.com

Visit the **new** TMWorld.com.

The industry's best source for test, measurement, and inspection information.

Handheld data recorder samples at 40 kHz

The Dash 2EZ+ portable data recorder from Astro-Med can record two channels of analog voltage along with one TTL event input to CompactFlash media at sample rates up to 40 kHz per channel. The HV-EZ+ isolated high-voltage module accepts inputs up to 250 Vrms, and the BR-EZ+ isolated DC bridge input module connects to most sensors, strain gages, and transducers.

A meter function provides a numeric readout of data simultaneously with waveform data. Built-in digital signal processing for each channel allows you to program low-

pass, high-pass, band-stop, and RMS filters. A 5.7-in. color display allows users to view waveforms in real time. The unit also contains a 3.1-in. strip-chart recorder. Data can be uploaded to a PC via Ethernet or USB 2.0.

Base price: \$2995. Astro-Med, www.astro-med.com.

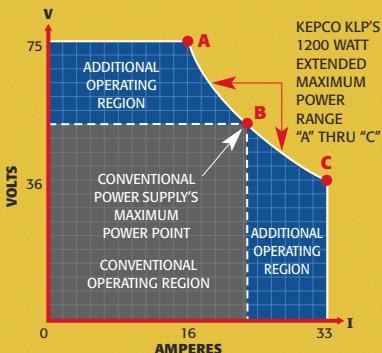
Protocol tester supports wideband AMR

The 6113 Air Interface Monitor Emulation (AIME) base station protocol test system from Aeroflex now offers wideband adaptive multi-rate (AMR) support, which is related to the 3GPP TS45.003 test specification.

By combining the 6113E test set with the 6113E AIME software package, you can monitor, debug, and fault-find the layer 1 and protocol interchanges on the Um interface with a fully decoded display of layer 2 and layer 3 messages. The 6113 AIME protocol test system also of-

fers script editing, debugging, execution, and automation facilities, as well as logging of all air interface signaling and traffic frames.

Aeroflex, www.aeroflex.com.


Test platform gains optical loss test module

EXFO has expanded its AXS-200 SharpTester line of handheld testers for telecom access networks with the launch of the AXS-200/350 test module, an optical loss test set (OLTS). The module is designed for testing fiber-to-the-home (FTTH) deployments as well as for assessing coarse wavelength division multiplexing (CWDM) and dense wavelength division multiplexing (DWDM) networks. It offers easy pass/fail threshold configuration, 40 calibrated wavelengths within the 800-nm to 1650-nm range, and a power range of +26 dBm to -55 dBm.

EXFO Electro-Optical Engineering, www.exfo.com.

KEPCO IS AHEAD WITH OUR CURVE.

KEPCO'S EXCLUSIVE TECHNOLOGY REPLACES THE NEED FOR MULTIPLE POWER SUPPLIES BY EXPANDING THE OPERATING REGION OF THE KLP POWER SUPPLY. THE BREAKTHROUGH OF A HYPERBOLIC POWER LIMIT DELIVERS A FULL 1200 WATTS OVER AN EXPANDED OPERATING RANGE, NOT JUST A SINGLE POINT.

Kepco's Series KLP is programmable in many languages, using many common interfaces: GPIB and isolated analog control are standard and an LXI-approved LAN (Ethernet, RJ-45) connector is also available.

LXI™

Call us to **TALK** about the Series KLP Power Supplies or visit www.kepcopower.com/klp.htm

KEPCO, INC. 131-38 Sanford Avenue
Flushing, NY 11352 USA

Tel: (718) 461-7000 • Fax: (718) 767-1102

Email: hq@kepcopower.com • www.kepcopower.com

AN ISO 9001 COMPANY
KEPCO
THE POWER SUPPLIER™
SINCE 1946

TEST COACH CORPORATION
Your answer to comprehensive test services

Always a top provider of
In-Circuit Test Programming

NOW OFFERING

- Göpel Boundary Scan
- SPEA Flying Probe

Let a Test Coach consultant assist you in delivering the right solutions to some of your toughest test challenges.

TEST COACH
CORPORATION

Toll-free 1.877.551.4129
www.testcoachcorp.com

"WE SAVED ABOUT 12 DAYS OF WORK AND \$6,000 IN TRAVEL EXPENSES AT APEX!"

It's MY Show!

"With the information from the show, not only were we able to purchase \$100,000 worth of AOI equipment, we also were able to downselect vendors for our selective soldering project. This show is a tremendous resource for information and developing contacts."

*Bill Kasprzak,
Electronics Manufacturing Process Engineer
Moog, Inc.*

IPC Printed Circuits Expo®, APEX® and the Designers Summit

The ONLY international show featuring a premier exhibition, influential standards development meetings, an exclusive technical conference and first-rate professional development courses.

DESIGN

PRINTED BOARDS

ELECTRONICS ASSEMBLY

TEST

CONFERENCE & EXHIBITION: April 1-3, 2008
MEETINGS: March 29-April 3, 2008

Mandalay Bay Resort & Convention Center, Las Vegas
+1 847-597-2860 | 877-472-4724 (U.S./Canada) | shows@ipc.org | www.GoIPCShows.org

MACHINE-VISION & INSPECTION

TEST REPORT

Smart cameras serve as LabView targets

By Rick Nelson, Chief Editor

National Instruments' monochrome VGA NI 1722 and NI 1742 smart cameras have 400-MHz and 533-MHz PowerPC processors, respectively. NI Vision product manager Matt Slaughter commented on NI's entry into the smart-camera market in an exclusive interview.

Q. When did NI introduce the two smart cameras?

A. We had a preannouncement at NIWeek last summer, where we showed off some of the features during a keynote demo, but the official announcement occurred at Vision 2007 in November.

Q. NI is reselling some third-party cameras—why not take that approach with the smart cameras?

A. We have GigE Vision and 1394 [FireWire] cameras from Basler that we are reselling, and there certainly are other smart camera vendors out there—some of whom ship their cameras with our software. But we wanted to make sure that our smart

cameras represent a true LabView target that we had complete control over.

GigE Vision and 1394 cameras comply with set standards, so regardless of what third-party camera we are using, our back-end software can stay the same. That's not the case with smart cameras, and we had to do a lot of driver development to get our smart cameras to work with all the software we have.

Q. Can you give an example of these cameras' compatibility with NI software?

A. For NIWeek, we like to do run-throughs a month early to make sure everything goes smoothly, and I didn't have a new smart camera available to use to develop the demonstration. So, I used a monochrome analog camera with the same 640x480-pixel resolution. I wrote my entire application in LabView using a standard driver, and I was able to directly port that application over to the smart camera with minimal changes.

Q. Your smart cameras have two Ethernet ports. Are they GigE Vision compliant?

A. No, we are emphasizing that they are not GigE Vision cameras. One port will be used for reporting results and maybe for reporting failed images back to your main host. The other port is typically going to be used for one of two things: The first is troubleshooting, in which you can walk up and plug in a laptop via crossover cable and do troubleshooting without ever pulling the camera

Matt Slaughter
NI Vision product manager
National Instruments
Courtesy of National Instruments.

off the line. The second thing that most people will probably do with this second port is communicate with other devices, like PLCs or our CompactRIO platform.

Q. Will you ever add GigE Vision?

A. That's something that's been brought up a few times. But the purpose of a GigE Vision camera is of course to return images as quickly as possible, and you typically would not go with a \$2000 smart camera to do that. So, I don't think we get much value added by turning this into a GigE Vision camera. But I'm not going to say it will never happen.

Q. This is NI's first foray into the smart camera market—is it the last?

A. No, it's not just these two cameras we are releasing; it's going to be an entire family of cameras. You can expect to see an announcement about every quarter. □

This article is a condensed version of the interview, in which Slaughter commented on CCDs vs. CMOS, choosing camera processor speeds, and using smart cameras for motor control. Read the complete interview in the online version of this article at www.tmw.com/2008_02.

INSIDE THIS REPORT

- 58** Editor's note
- 58** Highlights
- 60** Machine-vision focus shifts with application
- 62** Transmissive 2-D x-rays speed PCB inspection
- 63** Products

EDITOR'S NOTE

Inspection vies with test at APEX

By Rick Nelson, Chief Editor

Inspection has long had a place in the production of printed-circuit boards (PCBs), as shrinking component sizes, multiple layers, and hidden solder balls hinder the access necessary for electrical test. And optical and x-ray inspection techniques not only make up for a lack of test coverage, but they can also uncover problems such as solder-paste deficiencies or missing components early in the production process.

Of course, inspection alone isn't sufficient. Few would opt to ship a product that hasn't undergone structural, in-circuit, or functional electrical test. To that end, boundary-scan tools and electrical test systems have evolved to provide enhanced test coverage.

What's been missing as inspection and test tools evolve, however, has been a recipe for deciding how much of each you'll need. To help you make sense of the choices, the IPC at APEX will present a panel of executives representing Agilent Technologies, Asset InterTech, CyberOptics, CheckSum, Everett-Charles, and YesTech, who will discuss how to mix and match test and inspection technologies. I will moderate the panel, scheduled for 10:15 am on April 3 at APEX in Las Vegas.

You won't get a formal recipe, but you'll learn valuable information that will help you sort through these firms' x-ray inspection, optical inspection, boundary-scan, and electrical-test offerings. More important, you'll have a chance to make your comments heard. □

Contact Rick Nelson at rnelson@tmworld.com.

HIGHLIGHTS

Rudolph purchases IP and assets from RVI Inspection

Rudolph Technologies, a provider of process-characterization equipment and software used in wafer-processing and semiconductor manufacturing, reports that it has acquired all intellectual property and selected assets from RVI Inspection of Hauppauge, NY. Rudolph said it expects the addition of RVI's industry-standard WS-3800 3-D bumped wafer inspection system to its product portfolio will strengthen its presence in the advanced packaging market. Terms of the transaction were not disclosed.

The WS-Series wafer inspection system is used by back-end manufacturers, particularly for bump applications. The system performs 3-D bump-height and coplanarity measurements, and with proprietary Micro-Map 3-D laser-based triangulation, it is designed to achieve required inspection speeds without compromising defect detection.

"We will be adding an excellent technical team to our Rudolph organization and expect to quickly and efficiently fold the RVI operations into our existing inspection business," said Nathan Little, executive VP and GM of the Inspection Business Unit. "With a high level of customer overlap, combined with our existing global applications and service support network, our goal is to make this transition as seamless as possible."

Rudolph will maintain a technology center for the wafer scanner products in Hauppauge but will relocate the manufacturing activities to Bloomington, MN. www.rudolphtech.com.

Call for papers: The Vision Show

The Automated Imaging Association is seeking presentations for The Vision Show 2008, scheduled for June 10-12 in Boston, MA. Possible topics include machine-vision lighting and software, 3-D vision, nonvisible imaging, and smart cameras. www.machinevisiononline.org.

Quest chooses Lattice FPGAs

Lattice Semiconductor has announced that Netherlands-based Quest Innovations selected the LatticeECP2/M field-programmable gate arrays (FPGAs) for use in its next-generation Raptor series of Gigabit Ethernet cameras. Quest has integrated its QuadCore IP multicore parallel pixel processing unit into the Lattice FPGAs, which incorporate the LatticeMico32 open-source soft microprocessor core, 840-Mbps high-speed low-voltage differential signaling (LVDS) I/O, a pre-engineered DDR2 memory interface, and full-featured digital signal processor (DSP) blocks.

By connecting 10 QuadCore IP cores, Quest can process and transfer images at 1 Gbyte/s. The latest version of the Raptor camera system will support more than 2 Mpixels, 500 fps, and 8 Gbytes of memory; the camera will also perform preprocessing and store up to 24 s of high-speed image data.

"The LatticeECP2/M FPGA family proved to be an excellent platform for integrating our high-performance QuadCore scalable pixel processing IP into our Raptor camera systems," said Richard Meester, president and CEO of Quest Innovations. "The combination of the Lattice FPGAs and IP cores, combined with our expertise in machine-vision systems, has allowed Quest Innovations to develop a truly industry-leading, user-programmable camera system." www.latticesemi.com.

Rick Nelson, Chief Editor

Of course, inspection alone isn't sufficient. Few would opt to ship a product that hasn't undergone structural, in-circuit, or functional electrical test. To that end, boundary-scan tools and electrical test systems have evolved to provide enhanced test coverage.

What's been missing as inspection and test tools evolve, however, has been a recipe for deciding how much of each you'll need. To help you make sense of the choices, the IPC at APEX will present a panel of executives representing Agilent Technologies, Asset InterTech, CyberOptics, CheckSum, Everett-Charles, and YesTech, who will discuss how to mix and match test and inspection technologies. I will moderate the panel, scheduled for 10:15 am on April 3 at APEX in Las Vegas.

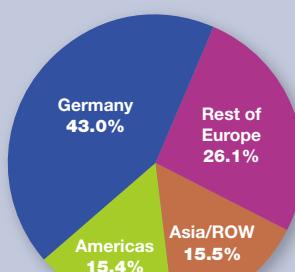
You won't get a formal recipe, but you'll learn valuable information that will help you sort through these firms' x-ray inspection, optical inspection, boundary-scan, and electrical-test offerings. More important, you'll have a chance to make your comments heard. □

Contact Rick Nelson at rnelson@tmworld.com.

Stuttgart show highlights vision market

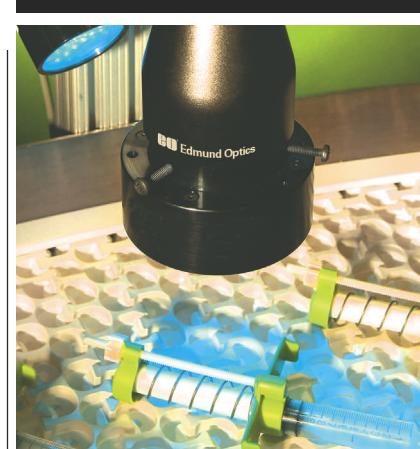
The worldwide machine-vision industry is showing considerable strength, based on activity at Vision 2007, held November 6–8, 2007. The Stuttgart event gave the German machine-vision industry an opportunity to tout its particular strengths.

At a November 6 press conference kicking off the show, Thomas Walter, division director of industrial solutions for Messe Stuttgart, noted that the Vision show celebrated its 20th anniversary by convening for the first time in the New Stuttgart Trade Fair Centre adjacent to Stuttgart Airport. "It is hard to believe, but Vision 2007 has attracted 281 exhibitors," he commented, adding that the number represented "an increase of 31% compared with 2006, when we exceeded the 200 mark for the first time, with 214 exhibitors."


Walter noted that the exhibitors hailed from 27 countries, with 42% coming from abroad: "The largest contingent of foreign exhibitors comes from the USA, followed by the United Kingdom, Canada, Japan, Switzerland, the Netherlands, and France." Also represented, he said, were exhibitors from the Republic of Korea, Finland, Greece, and Hungary. He had estimated that the 2007 show would have 5500 attendees, with 25% of them coming from abroad; in fact, the show enjoyed about 6000 visitors, with 32% of them coming from outside Germany.

Dr. Dietmar Ley, CEO of Basler and chairman of the VDMA (German Engineering Federation) Machine Vision Group, presented specifics related to the German machine-vision market. He said that the German machine-vision industry remains on target for solid growth. In 2006, it increased the sector's revenue by 9% to €1.1 billion. In 2007, the companies surveyed by VDMA are expecting an increase in revenue totaling 6%, with a further increase of 6% also predicted for 2008.

He said that worldwide demand helped German manufacturers of machine-vision cameras to increase their revenue by 29% in 2006 compared with the previous year. Other machine-vision components also gained in 2006, he said, with lights up 43%, lenses up 34%, and machine-vision software up 30%. As for machine-vision systems, Ley noted that revenue for standard systems (including smart cameras and vision sensors) increased 5% in 2006, with smart-camera revenue jumping 157%. In contrast, he said, sales of custom, single-application systems fell 4%.


"Despite the solid domestic business, the foreign market remains the most important engine for growth," Ley said. He said that German vision firms are well positioned in the foreign markets, with 57% of 2006 revenue coming from abroad—8% higher than the previous year. More than a quarter of the revenue was achieved in Europe (excluding Germany), he said, while Asian and American markets accounted for 15% each (figure).

Lay also reported some European Machine Vision Association (EMVA) machine-vision data for all of Europe. According to EMVA market research, he said, the European suppliers recorded an overall growth of 11% in 2006 and expect 9% growth for 2007. □

Although domestic sales represented the largest single segment of the German machine-vision industry in 2006, exports accounted for more than half of the revenues.

Source: VDMA.

BUILD THE RIGHT SYSTEM EVERY TIME

TECHSPEC®

TELECENTRIC LENSES

COMPACT FIXED
FOCAL LENGTH LENSES

LONG WORKING
DISTANCE OBJECTIVES

HARSH ENVIRONMENT
OPTICS

NEW LENS SELECTION GUIDE

Match Imaging
Needs with Lenses
and Cameras

www.edmundoptics.com/selectionguide

Request your
FREE copy today!

800.363.1992

www.edmundoptics.com/TM

ED Edmund
optics | worldwide

Machine-vision focus shifts with application

By Rick Nelson, Chief Editor

Dalsa sales and marketing VP Philip Colet commented on hot topics in the machine-vision industry in this interview with *T&MW*.

Q. What are the key issues facing the machine-vision and inspection industry?

A. When I look at machine vision, I look at the different components: lighting, optics, sensor technology, camera technology, data-acquisition technology, and image analysis and processing. Depending on the type of application a customer has, we will stress different components in different ways. In terms of illumination for semiconductor applications, as line widths get smaller and smaller, we want to start talking about ultraviolet (UV) and deep UV, and that has implications for optical technology and sensor technology. And since the data rates are so high, there are also implications with respect to camera speed and data processing.

Q. Where is the emphasis on printed-circuit board (PCB) inspection applications—on frame rates and resolution or on algorithms that can do more with less data?

A. In automated optical inspection [AOI] applications, the throughput of a machine is a competitive advantage, so the faster that machine works, the better. The machine must, of course, analyze the images it acquires, but it all comes down to how quickly it can scan a PCB and how many PCBs it can do in an hour. So, the AOI OEMs are asking for higher resolution, and they are asking for higher frame rates.

Q. Dalsa recently introduced the Falcon 1.4M100 area-scan camera. What are some of its features?

A. Its resolution of 1400-by-1k pixels is good for a variety of machine-

Philip Colet
Sales and marketing VP
Dalsa

Courtesy of Dalsa.

vision applications. Also, the size of the sensor ties in nicely to the size of available lenses, so you can use a relatively inexpensive lens, and you can get relatively close to your object.

But the unique feature about this camera is the speed—the ability to go to 100 fps at that resolution. And that speed of image acquisition can be useful in, for example, the populated PCB AOI we were just discussing. It can also find use in the high-speed chip shooters that are populating PCBs.

Q. Is it a CMOS or a CCD camera?

A. It's a CMOS sensor that provides very good quality images with quite a good signal-to-noise ratio as well as quite good CCD-quality light-gathering capability. The whole debate about CMOS vs. CCD is to us almost irrelevant. To us, the image quality we can get with a CMOS sensor is just as good as what we can derive with many CCD imagers on the market today.

Q. So CMOS will replace the CCD?

A. CCD won't go away. There will continue to be niche applications for

CCD—for example, for applications requiring backside thinning. Backside thinning is a lot easier to do with CCDs than with CMOS.

A second example is the TDI [time delay and integration] sensor. Dalsa makes a lot of TDI sensors, which are essentially line-scan sensors where you have this bucket brigade in which you are dumping charge. With CMOS, that just doesn't happen, because you don't have a charge anymore, you have a voltage, and you can't really accumulate voltage the way you can accumulate charge.

So our feeling is, CCD will stay in these niche applications, but CMOS will take over in terms of image quality.

Q. What's happening with image processing—is it still taking place on a dedicated image-processing board, or is it migrating to the PC?

A. If you go back 15 years, you had relatively lame computers, and all of the processing had to occur on special image-processing hardware. But then two things happened. Number 1, the PCI bus became popular, and it allowed you to dump raw data down to a PC. And number 2, we saw a corresponding rise in the processing power of the PC. It was those two things happening at the same time that enabled a transfer of processing responsibility from an onboard architecture down to a standard PC architecture.

Q. So, the embedded architecture is dead?

A. No way. Because people are always pushing the envelope. The kinds of sensors that are coming out right now, the data rates they are running at, and the complex algorithms that people want to execute can still over-

whelm even a quad-core PC, so you still have to do some processing on the board. Where do we find those applications? They tend to be in anywhere you are generating a lot of data—such as semiconductor wafer-inspection applications—or they tend to be in real-time applications, where I do not have the ability to accumulate data and then process it.

Q. What will be the hot topics in machine vision in 2008?

A. The debate will continue between CCD and CMOS, and I expect CMOS to continue to progress in terms of image quality and light sensitivity. In terms of camera technology, I expect the issues to have more to do with the interconnect as opposed to what's in the camera itself.

The hot subjects there would be where we are in terms of 10 GigE Vision and where we are in terms of Camera Link and its limitations. We have the mini-Camera Link connector now and Power over Camera Link, which are real benefits to OEMs, but what comes next?

Camera Link will bring you up to about 680 Mbytes/s maximum, but we are talking about sensors that will be going at 1 Gbyte/s or even 2 or 3 Gbytes/s. What interconnect technology are we going to be using for them? We will be looking at PCI Express to see what it can do for us.

In terms of software technology, there will be continued work on pattern recognition and on color. Today, color is complicated because there are a lot of ways to look at color, and color tools now are somewhat antiquated in how they force people to think about color. New color tools should simplify the life of the OEMs so they are not forced into thinking in one domain or another. □

This article is a condensed version of the complete interview, in which Colet elaborates on FPGA programming, discusses the differing requirements for bare- and loaded-PCB AOI, and comments on application areas ranging from traffic control to medical imaging. Read the transcript in the online version of this article at www.tmwORLD.com/2008_02.

Application development is serious work

Matrox Imaging makes it child's play

With the Matrox Design Assistant integrated development environment, non-programmers can easily and quickly configure the Matrox Iris E-Series smart camera to solve challenging vision applications. Setup capture, location, measurement, reading, communication and I/O operations as well as a web-based HMI within a single intuitive flowchart-based graphical user interface.

The Matrox Design Assistant integrated development environment coupled with the powerful Matrox Iris E-Series smart camera gives machine vision OEMs and systems integrators the ultimate development platform. That means at the end of the day, they'll have more time to play.

See Matrox Iris E-Series with Design Assistant in action!
www.matrox.com/imaging/irisdavideo.cfm

Matrox Iris E-Series with Design Assistant

1-800-804-6243/+1-514-822-6020 / imaging.info@matrox.com
www.matrox.com/imaging

5 megapixel

color or monochrome
camera systems with
exceptional image quality

SILICON VIDEO® 5C10

SILICON VIDEO® 5M10

\$1095

camera, board,
cable, & software
(lens not included)

The Silicon Video 5C10 or 5M10 camera systems offer 5 megapixel progressive scan color or monochrome image capture, small size, flexible interface cable, and convenient software control.

The Silicon Video 5C10 or 5M10 camera has a programmable resolution of up to 2592 H by 1944 V pixels, with windowing down to 4 pixels by 2 lines, global or rolling shutter, column and row skip or binning modes, programmable gain, programmable exposure, auto black level, color balancing, and can capture single images or movie sequences with the PIXCI SI frame grabber and our ready to run software or our optional ROYALTY FREE programmer libraries.

Trigger input for asynchronous capture.

Strobe output to fire an electronic flash.

One RJ45 cable connects the camera to the PIXCI SI frame grabber and provides power, camera controls, and video data.

The Silicon Video 5C10 or 5M10 camera system includes:

5 Megapixel Color or Monochrome Camera Head

Infrared Cut Filter (SV5C10)

7 foot Shielded Interface Cable
(other lengths available)

PIXCI SI PCI Digital Frame Grabber

XCAP-Lite Imaging Program
(XCAP-Ltd or Std Optional)

XCAP™ Lite Software

Dedicated camera
controls for
Windows & Linux

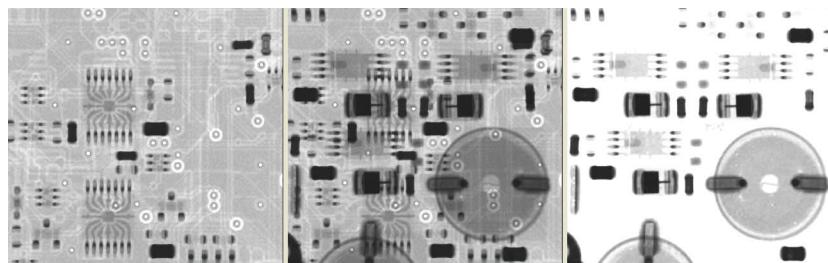
XCAP-Lite Software is Windows and Linux compatible and provides dedicated camera control including exposure, sub-windowing, sub-sampling, mirror/flip modes, color balance, and frame rate.

Optional XCAP-Ltd. and XCAP Std. software provides advanced capabilities.

EPIX

Buffalo Grove, IL USA
Tel - 847 465 1818

epixinc.com


MACHINE-VISION & INSPECTION

Transmissive 2-D x-rays speed PCB inspection

By Rick Nelson, Chief Editor

Building high-speed, low-cost automated x-ray inspection systems that are easy to program is the goal of MatriX Technologies, according to managing director Eckhard Sperschneider. In an interview at Productronica 2007, he said the company also works to link automated optical inspection (AOI) and automated x-ray inspection (AXI)

SFT, which in conjunction with the X2.5's new angle capability discerns hidden or overlapped joints, employs a proprietary algorithm to separate image data for each side of a double-sided PCB without requiring the use of 3-D laminography techniques. Sperschneider explained that SFT combines software with a knowledge of the x-ray dynamic-absorption

The proprietary Slice Filter Technique (SFT) supports the inspection of solder joints on double-sided assemblies: (left) the top side of a PCB before assembly of the bottom-side components; (middle) an x-ray of the fully assembled double-sided PCB; (right) the bottom-side solder joints after SFT-based image reconstruction. Courtesy of MatriX Technologies.

data to find defects and correct their causes in real time. Sperschneider said the German company, founded in 2004, targets OEMs serving the automotive, telecom, and other industries where maintaining high production throughput is critical.

To build systems that achieve high speeds at low cost while performing x-ray inspection of double-sided printed-circuit boards (PCBs), MatriX avoids using expensive, slow tomosynthesis techniques, according to Sperschneider. Instead, the company employs its Slice Filter Technique (SFT) to augment standard, high-speed transmissive 2-D x-ray analysis. At Productronica, MatriX introduced the X2.5 addition to its AXI product line, which adds a 0 to 45° angle-shot capability that Sperschneider said can work with SFT to guarantee 100% test coverage of double-sided PCBs.

characteristics of specific PCB materials to acquire top-side and dual-side images and then derive a bottom-side image (figure).

To implement the AOI-AXI link, MatriX uses its MIPS_Process software, which in its latest release includes a module that can correlate different inspection points in the SMT line—for example, on encountering a solder defect, the software can call up paste-inspection results and initiate corrective measures.

MIPS_Process can also be used as a Web interface tool. Sperschneider said that MIPS_Process acquires results from AOI systems from companies such as Viscom with the goal of locating problems such as joints with insufficient solder and locating the process step that results in the defect. "Finding defects is one thing," he said, but the goal is to eliminate them. □

PRODUCTS

Mini bar-code imager handles high-speed production

Microscan Systems has released the Quadrus MINI Velocity autofocus imager, which can read linear and 2-D codes moving as fast as 100 in./s. The imager helps manufacturers track data and monitor production parts and processes during high-speed production.

The Velocity reads linear and 2-D codes on a variety of items, such as printed-circuit boards, automotive parts, and packaging. With its autofocus technology, the imager can provide continuous reading performance across varying line speeds, code distances, and code types. The Velocity also includes Microscan's Easy Setup Program (ESP) software, which simplifies data collection through programmable features such as multisymbol reading, match code, trend analysis, symbol-quality reporting, and multiple I/O programming.

Microscan Systems, www.microscan.com.

Machine-vision cameras provide FireWire interface

The Sony Electronics XCD series of machine-vision cameras comprises three sets of cameras offered in VGA, SXGA, and UXGA resolutions and in either monochrome or color versions. The cameras include an IEEE 1394b (FireWire) interface, and a 1394b software driver delivers reliable daisy chaining of up to 62 cameras with an optional external power supply, according to the company.

A bus-synchronization feature permits cameras on the same bus to acquire images simultaneously without an external synchronization signal. With the broadcast delivery feature, users can simultaneously change the settings of all cameras on the same bus with a single command.

Sony Electronics, news.sel.sony.com.

JAI unveils compact cameras

JAI has launched four new digital cameras in its Core Camera Concept (C3) Compact family, an entry-level series with a small form factor and a single-tap, high-frame-rate architecture. The CM-140GE and CB-140GE deliver 1.4-Mpixel resolution (1392x1040 pixels) in monochrome and raw Bayer color, respectively. The CM200GE and CB200GE offer 2-Mpixel resolution (1628x1236 pixels) in monochrome and raw Bayer color.

The CM-140GE and CB-140GE operate at 31 fps, while the CM-200GE and CB-200GE run at a rate of 25 fps. All four cameras provide partial scanning and binning modes, as well as GigE Vision and GenICam interfaces.

JAI, www.jai.com.

Adimec introduces 1-Mpixel GigE cameras

The ONYX-1000 GigE CCD camera from Adimec provides excellent linearity over the full dynamic range of 63 dB, according to the company. The camera delivers 60 fps and offers features such as global shutter, channel matching to below noise level, automatic black and shading, and defect pixel correction. The 1/2-in. CCD area array sensor provides a 1024x1024-pixel resolution.

Adimec, www.adimec.com.

X-ray inspection system available in two configurations

The Verifier H series of horizontal-beam x-ray inspection systems from FocalSpot is designed for industrial, automotive, and medical applications. The systems provide manufacturing quality assessment and defect detection of components such as automotive sensors, electronic modules, and medical assemblies.

The Verifier H, which includes a four-axis, 360° manipulator, is offered in two configurations: 75 kV for general-purpose applications and 90 kV for applications requiring additional power to penetrate dense materials.

FocalSpot, www.focalspot.com.

**The
CONNECTION
has been made!**

Camera Link

Gig E

IEEE 1394
A&B

InfiniFlex
High-Flex
cable for
industrial
applications

Power
Supplies

Choose from our
wide selection of
in-stock cables,
or contact us in regard to your
custom vision
application.

Intercon 1
A Division of Nortech Systems

intercon@nortechsys.com
www.intercon-1.com

(800) 237-9576


TestLit Review®

USB BASED PORTABLE T1 E1 ANALYZER

New USB based T1/E1 Analyzer is the world's most powerful and complete voiceband, protocol, & BERT analyzer. Analysis & emulation of all signal types including voice, digits, tones, fax, modem & all protocols - HDLC, ISDN, SS7, CAS, GSM, GPRS, CDMA. Capable of T1 E1 visualization, capture, storage, & analysis. Convenient features like compatible with any PC, ultra portability, remote access, & scripting.

GL Communications Inc.

301-670-4784 x114, or
www.gl.com/usb2

SAVE TIME, MONEY & DATA

Use the \$429 HotMux data logger to digitize 8 thermocouple sensors, save data to file, and display results on computer monitor. RS-232 interfaced line powered HotMux provides a remote sensing capability and eliminates the sensor wire rat-nest at the computer. Visual Basic Windows® MS based software provides applications data transfer. Multi com-port capability for additional channel monitoring. Can also handle other linear sensors.

DCC Corp.

Pennsauken, NJ 08110
 856-662-7272 FAX: 856-662-7862
 Web site: www.dccCorporation.com

OM-CP-ULTRASHOCK101-50 -EB

This battery powered, 3-axis shock recorder measures and records temperature, pressure and humidity at the selected reading rates, while shock is recorded at the peak acceleration levels. Ideal for documenting dynamic environments and valuable in characterizing environments such as production and assembly lines of delicate electronics, IC fabrication, communications and computer components.

Omega Engineering, Inc.

(203) 359-1660, www.omega.com
<http://www.omega.com/DAS/pdf/OM-CP-ULTRASHOCK-EB.pdf>

ADVERTISER INDEX

ADVERTISER	PAGE
AEMC Instruments	43
Aerotech	36
Agilent Technologies	2
Agilent Technologies	22
AR	C-2
Amrel	42
Anthro	9
Aries Electronics	36
Associated Power Technologies	52
Avtech Electrosystems	36
Boonton	28
BuyerZone	C-3
Centellax	38
Circuit Specialists	65
Data Translation	27
Data Translation	37
DCC	64
Edmund Industrial Optics	59
EPIX	62
ESSC Test Laboratories	4
GL Communications	64
GL Communications	65
Honeywell	43
Intercon 1	63
IOtech	34
IPC/APEX	56
Keithley Instruments	6
Kepco	55
Matrox Electronic Systems	61
Measurement Computing	33
National Instruments	C-4
National Instruments	21
Navatek Engineering	49
Omega Engineering	1
Omega Engineering	64
Omicron	49
Reed Exhibitions	44
Rohde & Schwarz	5
Rohde & Schwarz	10
Rohde & Schwarz	13-20
Scientific Test	54
Test Coach	53
Test Coach	55
Universal Switching	8
Winchester Electronics	48
Xantrex	24
Winchester Electronics	48
Xantrex	24

Test & MEASUREMENT WORLD

225 Wyman St., Waltham, MA 02451
781-734-8423 Fax: 781-734-8070

Sales e-mail: tmwsales@reedbusiness.com
Editorial e-mail: tmw@reedbusiness.com
Web: www.tmw.com

BUSINESS STAFF

Publisher: Russell E. Pratt
rpratt@reedbusiness.com
Marketing Manager: Laura Koulet
Assistant to the Publisher: Darlene Fisher
Online Client Services Manager: Lyndsay A. Richmond

Market Research Director: Rhonda McGee

Group Production Director: Dorothy Buchholz
Production Manager: Joshua Levin-Epstein
Customer Contracts Coordinator: Kristin Chalifour

ADVERTISING SALES

CT, NJ, New York City, Long Island:
Mike Moore, Chatham, NJ. 973-701-9340
1.mikemoore@gmail.com

Midwest, Southeast, NY (except NYC & LI), PA,
MD, DE, and Canada:
James Leahy, Kenosha, WI. 262-656-1064
james.leahy@reedbusiness.com

CA, CO, TX, and Northwest:
Mary Lu Buse, Calabasas, CA. 818-880-4024
marylu.buse@reedbusiness.com

New England, South Central; Classified, Test Marts,
TestLits, and Account Development Nationwide:
Kathy McNamara, Waltham, MA. 781-734-8421
kathy.mcnamara@reedbusiness.com

Benelux, United Kingdom, Ireland, Scandinavia:
John Waddell, London, England. 44-20-8312-4696

Germany, Austria, Switzerland: Adela Ploner, Dachau,
Germany. 49-8131-366992-0

Italy: Roberto Laureri, -Milano, Italy. 39-02-236-2500

France, Spain, Portugal: Alain Faure, Issy-les-
Moulineaux, France. 33-1-55-95-95-11

Israel: Asa Talbar, Tel Aviv, Israel. Fax: 972-3-562-9565

Asia:

Hong Kong: Simon Lee, 852-2965-1526

Japan: Ken Mikami, Tokyo, Japan. 81-3-3402-0028

Korea: M.S. Kim, Seoul, South Korea. 82-02-752-4392

Taiwan: Grace Wu, Singapore. 886-22311-7609

Singapore, Malaysia: Wai Chun Chen, Singapore.
65-654411151

VOL. 28, NO. 1

Subscription Policy

Test & Measurement World® (ISSN 0744-1657) (GST Reg. # 123397457) is published monthly except January by Reed Business Information, 8878 S. Barrons Blvd., Highlands Ranch, CO 80129-2345. Reed Business Information, a division of Reed Elsevier, is located at 360 Park Avenue, New York, NY 10010. Tad Smith, CEO. Periodicals postage paid at Littleton, CO 80126, and additional mailing offices. Circulation records are maintained at Reed Business Information, 8878 S. Barrons Blvd., Highlands Ranch, CO 80129-2345. Telephone: 800-446-6551. POSTMASTER: Send address changes to Test & Measurement World®, P.O. Box 7500, Highlands Ranch, CO 80163-7500. For Canada: Publications Mail Agreement No. 406885520. Return undeliverable Canadian addresses to: RCS International, Box 697 STN A, Windsor Ontario N9A 6N4. Email: Submail@ReedBusiness.com. Test & Measurement World® copyright 2008 by Reed Elsevier Inc. Rates for non-qualified one-year subscriptions, including all issues: US, \$103; Canada, \$152 (includes 7% GST, GST# 123397457); Mexico, \$150; International (Priority), \$215. Except for special issues where price changes are indicated, single copies are available for \$10 (US orders) and \$15 (foreign orders). Buyer's Guide Issue (July) is available for \$35 (US orders) and \$40 (foreign orders). Please address all subscription mail to Test & Measurement World®, 8878 S. Barrons Blvd., Highlands Ranch, CO 80129-2345. Test & Measurement World® is a registered trademark of Reed Properties Inc., used under license. (Printed in U.S.A.)

Reed Electronics Group

A Complete VQT Solution

- ▶ Wireless Phone (cell & land mobile)
- ▶ Analog PSTN (2-Wire FXO)
- ▶ VoIP (SIP) Phone
- ▶ T1/E1 (PRI ISDN, CAS)
- ▶ ITU-P.862.1 & 862.2 Measurements

 GL Communications Inc.

301-670-4784 * info@gl.com * www.gl.com

Say What?

Hear thoughts and comments from our
editors about test and measurement,
economics, globalization, the general
engineering profession and much more.

The TMWorld.com Blogs

From the new
TMWorld.com

**Great Deals @
CircuitSpecialists.com**

Dual Output DC Bench Power Supplies

High stability digital read-out, featuring constant voltage and current outputs. Short-circuit and current limiting protection is provided. SMT PC boards and a built-in cooling fan help ensure reliable performance and long life.

All have a 1A/5VDC Fixed Output on the rear panel

CSI3003X-5: 0-30v/0-3amp 1A: \$105.95 5+: \$99.50

CSI5003X5: 0-50v/0-3amp 1A: \$114.95 5+: \$109.00

CSI3005X5: 0-30v/0-5amp 1A: \$119.00 5+: \$114.00

Triple Output DC Bench Power Supplies

- Output: 0-30VDC x 2 @ 3 or 5 Amps & 1ea. fixed output @ 5VDC@3A
- Source Effect: 5x10⁻⁴=2mV
- Load Effect: 5x10⁻⁴=2mV
- Ripple Coefficient: <250uV
- Stepped Current: 30mA +/- 1mA
- Input Voltage: 110VAC

CSI3003X3: 0-30VDCx2 @3A \$188.00 5+: \$183.00

CSI3005XIII: 0-30VDCx2 @5A \$249.00 5+: \$234.00

Programmable DC Power Supplies

- Up to 10 settings stored in memory
- Optional RS-232 interface
- May be used in series or parallel modes with additional supplies.
- Low output ripple & noise
- LCD display with backlight
- High resolution at 1mV

Model **CSI3644A** **CSI3645A** **CSI3646A**

DC Voltage 0-18V 0-36V 0-72V

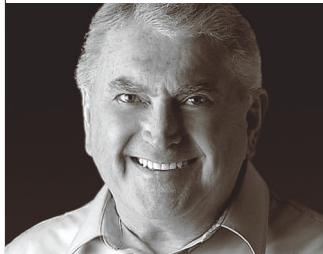
DC Current 5A 3A 1.5A

Power (max) 90W 108W 108W

Price \$199.00 \$199.00 \$199.00

www.CircuitSpecialists.com

A Sophisticated Scope Adapter


Price Breakthrough!

200MHz USB DSO

\$819.00

Full Details on web, Item#: 200DSO

Circuit Specialists, Inc.
www.CircuitSpecialists.com
800-528-1417 / Fax:480-464-5824

JIM MAGINN

CEO and Senior VP
AR
RF/Microwave Instrumentation
Souderton, PA

After starting his career in 1975 as a radar systems engineer at the DoD's Naval Air Development Center (NADC), Jim Maginn moved on to defense-related engineering management posts at Veda and FMC Corp. In 1992, Maginn joined Amplifier Research (now AR) as an engineering manager. He was promoted to VP of engineering and manufacturing in 1994 and to senior VP and COO in 1998. In 2006, Maginn was named senior VP and CEO, overseeing development and manufacturing of AR's broadband RF amplifiers and related RF and microwave devices. He holds a BSEE from Villanova University and a Master's in Industrial Engineering from Texas A&M.

Contributing editor Larry Maloney conducted this interview with Jim Maginn on trends in EMC and RF test applications.

New solutions to compliance headaches

Q: What is AR's niche in the test field?

A: Our heritage product is the broadband power amplifier, which we offer in frequencies from DC to 45 GHz and from 1 W to 10 kW. These instruments are used in countless applications, such as communications, physics research, component characterization and testing, and calibration of meters and probes, to name a few. But our key niche is really electromagnetic compliance (EMC) test. Any product containing electronics, whether it be an airplane or a child's toy, can require EMC certification.

Q: How are the changing needs of your customers shaping product development at AR?

A: Test engineers are faced with an ever-increasing need for more power and higher frequencies. Our amplifiers have always been designed with the maximum possible bandwidth. This gives engineers the product longevity they need as test frequencies increase. Our "subampability" design concept allows addition of subamps to a given product to increase power output by two, three, or four times as requirements grow.

Q: What technical challenges do you face with the rapid proliferation of wireless systems and devices?

A: What we call "frequency creep" provides us with the challenge of developing solid-state products that go up to 20 GHz now and up to 60 GHz in the very near future. We have acquired the clean-room facilities and design resources to apply microelectronic technology to the problem. That has resulted in our new line of 20-GHz amplifiers, which provide the same performance as our lower-frequency amplifiers and offer an alternative to the current traveling wave tube (TWT) technology.

Q: How is AR responding to the demand for easier-to-use products?

A: For our conducted immunity customers, we have designed the CI00250 and CI00400 test systems, which provide a much simpler approach to full calibration and testing. For

example, the CI00250 contains all the instruments needed to perform conducted immunity testing to the IEC 61000-4-6 specification. Equipment includes a signal generator, a two-channel power meter, a 75-W minimum AR amplifier for 10 kHz to 250 MHz, plus control software. Everything is contained in a single housing, which eliminates setup issues. In short, you reduce test time and boost productivity, while achieving superior accuracy.

Our SW1006 EMC test software and the TG6100 Automatic Transient Generator are also designed for ease of use. Both of these products feature embedded automatic protocols that comply with IEC, MIL-STD, and automotive test procedures and specifications.

Q: Are more customers asking to have AR products assembled into test systems?

A: Several years ago, we noticed a change in the nature of customer requirements from one of exploratory testing to one of following the requirements of standards and preparing to pass compliance testing by a certified test organization. This led us to develop our line of precompliance test systems.

More recently, we have seen the need to put together "amplifier systems," particularly in the 1- to 40-GHz range. Heavy losses in waveguide from amplifier to antenna make it almost a necessity to put the whole amplifier/antenna package inside the test chamber and close to the test item. For example, we designed our new AS40000 system to house amplifiers and antennas covering 800 MHz to 40 GHz in two air-conditioned, EMI-shielded equipment racks. We mounted the equipment racks and antenna mast on a rolling skid to create a portable field generation platform. We'll continue to explore such system solutions for customers. **T&MW**

Jim Maginn discusses more new products and technology development at AR in the online version of this interview: www.tmworld.com/2008_02.

Want to save time and money on **INDUSTRIAL EQUIPMENT?**

Let BuyerZone do the heavy lifting so you don't have to.

Save time and money on industrial equipment purchases. Get free advice and pricing articles on everything from forklifts, to pallet racks to floor cleaning equipment and more. BuyerZone is here to do the heavy lifting of finding all the suppliers. You just need to make the final decision. At BuyerZone, you're in control. We're just here to make your work easier.

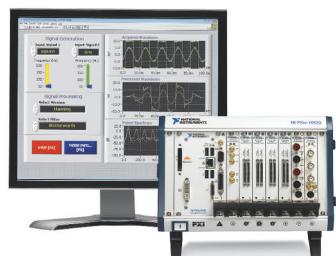
Join the millions who've already saved time and money on many of their Industrial Equipment purchases by taking advantage of BuyerZone's FREE, no obligation services like:

- Quotes from multiple suppliers
- Pricing articles
- Buyer's guides
- Supplier ratings
- Supplier comparisons

REQUEST FREE QUOTES NOW!
Call (866) 623-5565 or visit
BuyerZoneIndustrial.com

BuyerZone
Where Smart Businesses Buy and Sell

Test. Accelerated.


Reduce Your Cost with a Faster Automated Test System

Advanced parallel testing and multicore development tools

High-performance modular instrumentation (DC to RF)

Industry's lowest latency and highest throughput test platform

Optimized drivers and controllers for more than 5,000 instruments

PRODUCT PLATFORM

NI TestStand software

NI LabVIEW graphical software

PXI modular instrumentation

For more than 30 years, National Instruments technology has been the foundation for building faster automated test and measurement systems. The NI test platform combines the advantages of open PC-based systems, PXI modular instrumentation, and unlimited instrument control solutions – all powered by the industry's most comprehensive and widely chosen test system software.

>> Learn best practices for test system design at ni.com/automatedtest

800 891 8841

